We present an easy‐to‐use step‐wise procedure to synthesize an initial‐dividing wall column (i‐DWC) from any given n‐component basic distillation column sequence or its thermally coupled derivative. The procedure to be used is dependent on the nature of the distillation column sequence that is to be converted into a DWC, and comprises of an intuitive set of steps that we demonstrate through examples. It is noteworthy that, even for a ternary distillation, 15 potentially useful DWCs, some of which had been missing from the literature, have now been identified. This work significantly expands the search space of useful DWCs to separate any given multicomponent mixture. © 2017 American Institute of Chemical Engineers AIChE J, 64: 649–659, 2018
We propose new dividing wall columns (DWCs) that are equivalent to the fully thermally coupled (FTC) configurations. While our method can draw such configurations for any given n‐component mixture (n ≥ 3), we discuss in detail the DWCs for ternary and quaternary feed mixtures. A special feature of all the new DWCs is that during operation, they allow independent control of the vapor flow rate in each partitioned zone of the DWC by means that are external to the column. Because of this feature, we believe that the new arrangements presented in this work will enable the FTC configuration to be successfully implemented and optimally operated as a DWC in an industrial setting for any number of components. Also, interesting column arrangements result when a new DWC drawn for an n‐component mixture is adapted for the distillation of a mixture containing more than n components. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2949–2961, 2014
We present a simple rule that, for the first time, enables exhaustive enumeration of dividing wall columns (DWCs) corresponding to any given thermally coupled distillation column‐configuration. With the successive application of our rule, every partition in a DWC can be extended all the way to the top and/or to the bottom of a column without losing thermodynamic equivalence to the original thermally coupled configuration. This leads to easy‐to‐operate DWCs with possible control/regulation of each and every vapor split by external means. As a result, we conclude that any given DWC can be transformed into a thermodynamically equivalent form that is easy‐to‐operate, and hence, there always exists at least one easy‐to‐operate DWC for any given thermally coupled distillation. Our method of enumerating and identifying easy‐to‐operate DWCs for an attractive thermally coupled configuration will contribute toward process intensification by providing ways to implement efficient and low‐cost multicomponent distillations. © 2017 American Institute of Chemical Engineers AIChE J, 64: 660–672, 2018
Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost-effective configurations. In this work, a powerful and simple-to-use fact about heat and mass integration is identified. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. The energy savings of HMP configurations is compared with the well-known fully thermally coupled (FTC) configurations. HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration is demonstrated, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations. Figure 3. (a) A configuration derived from the configuration in Figure 2c by introducing thermal couplings at all submixtures; (b) A HMP configuration that is thermodynamically equivalent to the configuration in Figure 3a.Note that the thermal coupling at submixture DEF of Figure 7a is converted into a liquid-only transfer stream19 in Figure 7b, indicated by the curved arrow.Figure 9. (a) One possible operable dividing wall column drawn from the FTC configuration of Figure 8a using the methodology of Madenoor Ramapriya et al. 24,25 Notice that this dividing wall column uses three dividing walls and nine intermediate transfer streams; (b) one possible operable dividing wall column version synthesized from the HMP configuration of Figure 8b; (c) one possible operable dividing wall column version synthesized from the HMP configuration of Figure 8c. Notice that both dividing wall columns of Figures 8b, c use only 2 dividing walls and 5 intermediate transfer streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.