The Raychaudhuri equation is derived by assuming geometric flow in space–time M of n+1 dimensions. The equation turns into a harmonic oscillator form under suitable transformations. Thereby, a relation between geometrical entropy and mean geodesic deviation is established. This has a connection to chaos theory where the trajectories diverge exponentially. We discuss its application to cosmology and black holes. Thus, we establish a connection between chaos theory and general relativity.
In this paper we review the fundamental concepts of entropy bounds put forward by Bousso and its relation to the holographic principle. We relate covariant entropy with logarithmic distance of separation of nearby geodesics. We also give sufficient arguments to show that the origin of entropy bounds is not indeed thermodynamic, but statistical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.