This paper presents image velocimetry measurements on turbulent flows adjacent to a permeable bed made of randomly packed glass particles. For measuring flow velocities inside the bed, the refractive index of the glass particles was matched with that of the fluid. By continuously scanning in the transverse direction, we measured the streamwise and vertical velocity components within a three-dimensional domain (3D2C-PIV), including first-and second-order turbulent statistics. We established how the scanning travel speed is associated with the laser sheet thickness and the space-time velocity fluctuations for collecting reliable measurements. The methodology was applied to free-surface flows over a sloping bed under low relative submergence and supercritical conditions. Space-and time-averaged profiles were obtained in a representative elementary volume as defined by the double-averaging procedure (Nikora et al. in J Hydraulic Eng.127(2):123-133, 2001). A turbulent boundary layer over the rough bed was observed when experiments were run at intermediate Reynolds numbers Re = O(1000) . Apart from measuring subsurface velocities, this method shed light on the part played by the rough bed in the overall flow dynamics: the roughness layer was a buffer region within which porosity varied sharply and turbulent stress was rapidly dampened.
This paper proposes a novel strategy for completing a flight plan with a quadrotor UAV, in the context of aerial video making. The flight plan includes different types of waypoints to join, while respecting flight corridors and bounds on the derivatives of the position of the quadrotor. To this aim, non-uniform clamped B-splines are used to parameterize the trajectory. The latter is computed in order to minimize its overall duration, while ensuring the validation of the waypoints, satisfying the flight corridors and respecting the maximum magnitude on its derivatives. A receding waypoint horizon is used in order to split the optimization problem into smaller ones, which reduces the computation load when generating pieces of trajectories. The effectiveness of the proposed trajectory generation technique is demonstrated by simulation and through an outdoor flight experiment on a quadrotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.