Background Patients treated with anti-CD20 therapy are particularly at risk of developing severe COVID-19, however little is known regarding COVID-19 vaccine effectiveness in this population. Methods This prospective observational cohort study assesses humoral and T-cell responses after vaccination with 2 doses of mRNA-based COVID-19 vaccines in patients treated with rituximab for rheumatic diseases or ocrelizumab for multiple sclerosis (n=37), compared to immunocompetent individuals (n=22). Results SARS-CoV-2-specific antibodies were detectable in only 69.4% of patients and at levels that were significantly lower compared to controls who all seroconverted. In contrast to antibodies, Spike (S)-specific CD4+ T cells were equally detected in immunocompetent and anti-CD20 treated patients (85-90%) and mostly of a Th1 phenotype. Response rates of S-specific CD8 + T cells were higher in ocrelizumab (96.2%) and rituximab-treated patients (81.8%) as compared to controls (66.7%). S-specific CD4 + and CD8 + T cells were polyfunctional but expressed more activation markers in patients than in controls. During follow-up, three MS patients without SARS-CoV-2-specific antibody response had a mild breakthrough infection. One of them had no detectable S-specific T cells after vaccination. Conclusions Our study suggests that patients on anti-CD20 treatment are able to mount potent T-cell responses to mRNA COVID-19 vaccines, despite impaired humoral responses. This could play an important role in the reduction of complications of severe COVID-19.
IMPORTANCEThe SARS-CoV-2 variant B.1.1.529 (Omicron) escapes neutralizing antibodies elicited after COVID-19 vaccination, while T-cell responses might be better conserved. It is crucial to assess how a third vaccination modifies these responses, particularly for immunocompromised patients with readily impaired antibody responses.OBJECTIVE To determine T-cell responses to the Omicron spike protein in anti-CD20-treated patients with multiple sclerosis (MS) before and after a third messenger RNA COVID-19 vaccination. DESIGN, SETTING, AND PARTICIPANTSIn this prospective cohort study conducted from March 2021 to November 2021 at the University Hospital Geneva, adults with MS receiving anti-CD20 treatment (ocrelizumab) were identified by their treating neurologists and enrolled in the study. A total of 20 patients received their third dose of messenger RNA COVID-19 vaccine and were included in this analysis.INTERVENTIONS Blood sampling before and 1 month after the third vaccine dose.MAIN OUTCOMES AND MEASURES Quantification of CD4 and CD8 (cytotoxic) T cells specific for the SARS-CoV-2 spike proteins of the vaccine strain as well as the Delta and Omicron variants, comparing frequencies before and after the third vaccine dose. RESULTSOf 20 included patients, 11 (55%) were male, and the median (IQR) age was 45.8 (37.8-53.3) years. Spike-specific CD4 and CD8 T-cell memory against all variants were maintained in 9 to 12 patients 6 months after their second vaccination, albeit at lower median frequencies against the Delta and Omicron variants compared with the vaccine strain (CD8 T cells: Delta, 83.0%; 95% CI, Omicron, 78.9%; 95% CI, 59.4-100.0; CD4 T cells: Delta, 72.2%; 95% CI, 67.4-90.5; Omicron, 62.5%; 95% CI, 51.0-89.0). A third dose enhanced the number of responders to all variants (11 to 15 patients) and significantly increased CD8 T-cell responses, but the frequencies of Omicron-specific CD8 T cells remained 71.1% (95% CI, 41.6-96.2) of the responses specific to the vaccine strain. CONCLUSIONS AND RELEVANCEIn this cohort study of patients with MS treated with ocrelizumab, there were robust T-cell responses recognizing spike proteins from the Delta and Omicron variants, suggesting that COVID-19 vaccination in patients taking B-cell-depleting drugs may protect them against serious complications from COVID-19 infection. T-cell response rates increased after the third dose, demonstrating the importance of a booster dose for this population.
Background and Purpose Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with several complications of the central nervous system (CNS), including acute encephalopathy. Methods In this pilot study, we report a series of 39 patients (66.5 ± 9.2 years; 10.3% female) with acute encephalopathy, who underwent a standard brain magnetic resonance imaging (MRI) at 1.5 T during the acute symptomatic phase. In addition to diffusion-weighted imaging, MR angiography and susceptibility-weighted images, high-resolution vascular black blood sequences (in 34 cases) were used to investigate the vasculature of the brain. Results In 29 out of 34 patients with COVID-19 encephalopathy (85%) with high-resolution vessel wall imaging, we found a circular enhancement and thickening of the basilar and vertebral arteries, without any correlation with ischemia or microbleeds (reported in 21% and 59%, respectively). Conclusion We report a high prevalence of vascular changes suggestive of endotheliitis as reported in other organs. This could suggest an inflammatory mechanism underlying this encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.