This paper is concerned with a generalisation of the classical theory of the dynamics associated to the iteration of a rational mapping of the Riemann sphere, to the more general setting of the dynamics associated to an arbitrary semigroup of rational mappings. We are partly motivated by results of Gehring and Martin which show that certain parameter spaces for KJeinian groups are essentially the stable basins of infinity for certain polynomial semigroups.Here we discuss the structure of the Fatou and Julia sets and their basic properties. We investigate to what extent Sullivan's 'no wandering domains' theorem remains valid. We obtain a complete generalisation of the classical results concerning classification of basins and their associated dynamics under an algebraic hypothesis analogous to the group-theoretical notion of 'virtually abelian'. We show that, in general, polynomial semigroups can have wandering domains. We put forward some conjectures regarding what we believe might be true. We also prove a theorem about the existence of filled in Julia sets for certain polynomial semigroups with specific applications to the theory of Kleinian groups in mind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.