As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. Verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α = 1.9-2.42 and β = 0.65-0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study only used power-law model as an illustrative example to emphasize the need for model verification. Similar verification problems could be developed for other types of hemolysis models (such as strain-based and energy dissipation-based methods). However, since the current study did not include experimental validation, the results from the verified models do not guarantee accurate hemolysis predictions. This verification step must be followed by experimental validation before the hemolysis models can be used for actual device safety evaluations.
Complex unrepaired congenital heart disease requires extensive planning to determine the optimal procedural approach. Conventional noninvasive diagnostic imaging initially provides only two-dimensional (2D) representations of the complex, three-dimensional cardiovascular anatomy. With the expansion of 3D visualization techniques in imaging, a paradigm shift has occurred in complex congenital heart disease surgical planning using digital and 3D printed heart models. There has been early success in demonstrating the benefit of these models in interdisciplinary communication and education. The future goal of this work is to demonstrate a clinical outcome benefit using digital and 3D printed models to plan both surgical and catheterization-based interventional procedures. Ultimately, the hope is that advanced procedural planning with virtual surgery and 3D printing will enhance decision-making in complex congenital heart disease cases resulting in improved perioperative performance by reducing operative times, complications, and reoperations.
A “credible” computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing “model credibility” is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a “threshold-based” validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results (“S”) of velocity and viscous shear stress were compared with inter-laboratory experimental measurements (“D”). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student’s t-test. However, following the threshold-based approach, a Student’s t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be considered sufficiently validated for the COU. However, for Re = 6500, at certain locations where the shear stress is close the hemolysis threshold, the CFD model could not be considered sufficiently validated for the COU. Our analysis showed that the model could be sufficiently validated either by reducing the uncertainties in experiments, simulations, and the threshold or by increasing the sample size for the experiments and simulations. The threshold approach can be applied to all types of computational models and provides an objective way of determining model credibility and for evaluating medical devices.
In the absence of fit-testing, leakage of aerosolized pathogens through the gaps between the face and N95 respirators could compromise the effectiveness of the device and increase the risk of infection for the exposed population. To address this issue, we have developed a model to estimate the increase in risk of infection resulting from aerosols leaking through gaps between the face and N95 respirators. The gaps between anthropometric face-geometry and N95 respirators were scanned using computed tomography. The gap profiles were subsequently input into CFD models. The amount of aerosol leakage was predicted by the CFD simulations. Leakage levels were validated using experimental data obtained using manikins. The computed amounts of aerosol transmitted to the respiratory system, with and without leaks, were then linked to a risk-assessment model to predict the infection risk for a sample population. An influenza outbreak in which 50% of the population deployed respirators was considered for risk assessment. Our results showed that the leakage predicted by the CFD model matched the experimental data within about 13%. Depending upon the fit between the headform and the respirator, the inward leakage for the aerosols ranged between 30 and 95%. In addition, the non-fit-tested respirator lowered the infection rate from 97% (for no protection) to between 42 and 80%, but not to the same level as the fit-tested respirators (12%). The CFD-based leakage model, combined with the risk-assessment model, can be useful in optimizing protection strategies for a given population exposed to a pathogenic aerosol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.