It is usually assumed that chlorinated solvent nonaqueous-phase liquids (NAPLs) are nonwetting with respect to water-saturated porous media. The focus of this work was to examine whether this supposition is appropriate for used trichloroethylene (TCE) samples. In this work, the term "used" indicates that the sample has been employed industrially and therefore contains solutes and breakdown products related to its previous use. The data obtained in this study indicate that exposure of initially water wet quartz slides to industrially used solvents can cause a contact angle change, measured through the aqueous phase, of 100 degrees with a maximum stable contact angle of 170 degrees (indicative of strong NAPL wetting characteristics) being recorded. The work on quartz slides was complemented by the use of sandstone cores. Wettability was measured using the Amott test. Used TCE again proved able to alter the wetting properties of sandstone to neutral wetting. The complexity of the industrially used samples precluded any realistic attempt to examine the agents causing these wetting changes. The data captured in these experiments were compared with laboratory grade TCE, and some attempts were made to synthesize known mixtures in order to replicate wetting changes. These experiments resulted in contact angle changes but did not alter the overall wettability of the quartz slides or sandstone cores. Finally the work reported here also demonstrates that increasing the duration of exposure to solvent has an important impact upon measured contact angle.
The interfacial tension (IFT) that arises at the interface between water and an immiscible organic liquid is a key parameter affecting the transport and subsequent fate of the organic liquid in water-saturated porous media. In this paper, data are presented that show how contact between a range of soil types and chlorinated hydrocarbon solvent (CHS) dense nonaqueous phase liquids (DNAPLs) can affect DNAPL/water IFT values. The soils examined are indicative of U.K. soil types and shallow aquifer materials. The solvents investigated were tetrachloroethylene (PCE) and trichloroethylene (TCE). Lab grade, recovered field DNAPL and industrial waste chlorinated solvent mixtures were used. The data from batch and column experiments invariably revealed that water/DNAPL IFT values change following contact with unsaturated soils. In the majority of cases, the IFT values increase following soil exposure. However, after contact with an organic-rich soil, the IFT of the lab grade solvents decreased. The experimental evidence suggests that these reductions are linked to the removal of organic material from the soil and its subsequent incorporation into the solvent IFT increases in the case of lab solvents are shown to be linked to the removal of stabilizers (added by the manufacturers to obviate degradation) that are removed by adsorption to soil mineral surfaces. Similarly, it is conjectured that adsorption of surface-active compounds from the industrial waste samples to soil surfaces is responsible for increases in the IFT in these samples. Finally, it was observed that invading CHSs are capable of dissolving and subsequently mobilizing in-situ soil contaminants. GC/MS analysis revealed these mobilized soil contaminants to be polyaromatic hydrocarbons and phthalate esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.