Many biomedical, orthopaedic, and industrial applications are emerging that will benefit from personalized neuromusculoskeletal models. Applications include refined diagnostics, prediction of treatment trajectories for neuromusculoskeletal diseases, in silico design, development, and testing of medical implants, and human-machine interfaces to support assistive technologies. This review proposes how physics-based simulation, combined with machine learning approaches from big data, can be used to develop high-fidelity personalized representations of the human neuromusculoskeletal system. The core neuromusculoskeletal model features requiring personalization are identified and big data/machine learning approaches for implementation are presented together with recommendations for further research.
Electromyography-driven model is a unique tool to study bracing Minimal, but variable, brace effect on medial knee joint contact force Mechanistic studies are required in people with knee osteoarthritis ABSTRACT Background: Valgus knee braces have been reported to reduce the external knee adduction moment during walking. However, mechanistic investigations into the effects of valgus bracing on medial compartment contact forces using electromyogram-driven neuromusculoskeletal models are limited. Research question: What are the immediate effects of valgus bracing on medial tibiofemoral contact forces and muscular loading of the tibiofemoral joint? Methods: Sixteen (9 male) healthy adults (27.7±4.4 years) performed 20 over-ground walking trials at self-selected speed both with and without an Ossür Unloader One® brace. Assessment order (i.e., with or without brace) was randomised and counterbalanced to prevent order effects. While walking, threedimensional lower-body motion, ground reaction forces, and surface electromyograms from eight lower-limb muscles were acquired. These data were used to calibrate an electromyogram-driven neuromusculoskeletal model of muscle and tibiofemoral contact forces (N), from which muscle and external load contributions (%) to those contact forces were determined. Results: Although walking with the brace resulted in no significant changes in peak tibiofemoral contact forces at the group-level, individual responses were variable and non-uniform. At the grouplevel, wearing the brace resulted in a 2.35% (95% CI 0.46-4.24; p=0.02) greater relative contribution of muscle to lateral compartment contact loading (54.2±11.1%) compared to not wearing the brace (51.8±12.1%) (p<0.05). Average relative contributions of muscle and external loads to medial compartment loading were comparable between brace and no brace conditions (p≥0.05).
Musculoskeletal injuries (MSI) in the military reduce soldier capability and impose substantial costs. Characterizing biomechanical surrogates of MSI during commonly performed military tasks (e.g., load carriage) is necessary for evaluating the effectiveness of possible interventions to reduce MSI risk. This study determined the effects of body-borne load distribution, load magnitude, and walking speed on tibiofemoral contact forces. Twenty-one Australian Army Reserve soldiers completed a treadmill walking protocol in an unloaded condition and wearing four armor types (standard-issue and three prototypes) with two load configurations (15 and 30 kg) for a total of 8 armor x load ensembles. In each ensemble, participants completed a 5-minute warm-up, and then walked for 10 minutes at both moderate (1.53 m⋅s-1) and fast (1.81 m⋅s-1) speeds. During treadmill walking, three-dimensional kinematics, ground reaction forces, and muscle activity from nine lower-limb muscles were collected in the final minute of each speed. These data were used as inputs into a neuromusculoskeletal model, which estimated medial, lateral and total tibiofemoral contact forces. Repeated measures analyses of variance revealed no differences for any variables between armor types, but peak medial compartment contact forces increased when progressing from moderate to fast walking and with increased load (p<0.001). Acute exposure to load carriage increased estimated tibiofemoral contact forces 10.1 and 19.9% with 15 and 30kg of carried load, respectively, compared to unloaded walking. These results suggest that soldiers carrying loads in excess of 15 kg for prolonged periods could be at greater risk of knee MSI than those with less exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.