In order to assess changes in the community structure of ectomycorrhizal fungi across the tree line, data on distributions of fungi and their host plants, as well as on edaphic factors and stand age, were collected at two montane sites in the Front Range of the Canadian Rockies. Canonical correspondence analysis (CCA) was used to explore relationships between fungal species composition and environmental factors. Richness and diversity of ectomycorrhizal fungi decreased with elevation, in spite of the fact that host plant diversity was highest at the ecotone between the subalpine forest and the alpine zone. Both host plant distribution and edaphic factors were important in explaining the observed changes in fungal species diversity and composition. The majority of ectomycorrhizal fungi found in the subalpine forest and at the ecotone were conifer associates, while a large proportion of those in the alpine zone were non‐host specific and able to form mycorrhizae with both angiosperms and gymnosperms. The abundance of non‐host specific fungi in the alpine zone is expected to provide a favorable environment for the establishment of conifer seedlings above the present tree line.
abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. -Oikos 102: 497-504.Ectomycorrhizal (ECM) diversity was measured in 12 mixed-wood stands in the Abitibi region of north-western Québec. Stands were of similar age and were situated on similar mineral soil deposits, but supported varying proportions of ECM host trees. Host roots were sampled in a manner that enabled their separation into species on the basis of wood anatomy. Shannon diversity indices for the ECM colonizing each host species were determined on the basis of ECM anatomy. The diversity of overstory trees, understory plants and host roots, as well as overstory tree composition, root density and pertinent abiotic factors were measured and used as independent variables in multiple regressions against ECM diversity. We found a positive relationship between overstory tree diversity and ECM diversity, which appears related to fungal host specificity. Although no direct relationship was seen between ECM diversity and soil factors, levels of exchangeable base cations were related to ECM fungal species composition which correlated with ECM diversity at the scale sampled.
Fungal root endophytes colonize root tissue concomitantly with mycorrhizal fungi, but their identities and host preferences are largely unknown. We cultured fungal endophytes from surface-sterilized Cenococcum geophilum ectomycorrhizae of Betula papyrifera, Abies balsamea, and Picea glauca from two boreal sites in eastern Canada. Isolates were initially grouped on the basis of cultural morphology and then identified by internal transcribed spacer ribosomal DNA sequencing or by PCR restriction fragment length polymorphism. Phylogenetic analysis of the sequence data revealed 31 distinct phylotypes among the isolates, comprising mainly members of the ascomycete families Helotiaceae, Dermateaceae, Myxotrichaceae, and Hyaloscyphaceae, although other fungi were also isolated. Multivariate analyses indicate a clear separation among the endophyte communities colonizing each host tree species. Some phylotypes were evenly distributed across the roots of all three host species, some were found preferentially on particular hosts, and others were isolated from single hosts only. The results indicate that fungal root endophytes of boreal trees are not randomly distributed, but instead form relatively distinct assemblages on different host tree species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.