This report provides in-depth information and analysis to help create a technical road map for developing nextgeneration programming models and runtime systems that support Advanced Simulation and Computing (ASC) workload requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "exascale" computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AMT runtime systems-Charm++, Legion, and Uintah, all of which are in use as part of the ASC Predictive Science Academic Alliance Program II (PSAAP-II) Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching findings emerge. From a performance perspective, AMT runtimes show tremendous potential for addressing extremescale challenges. Empirical studies show an AMT runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MPI) and AMT runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a codesign path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the high-performance computing (HPC) community as a whole, with widespread community engagement mitigating risk for both application developers and runtime system developers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.