In this paper, we study an unmanned-aerial-vehicle (UAV) based full-duplex (FD) multi-user communication network, where a UAV is deployed as a multiple-input–multiple-output (MIMO) FD base station (BS) to serve multiple FD users on the ground. We propose a multi-objective optimization framework which considers two desirable objective functions, namely sum uplink (UL) rate maximization and sum downlink (DL) rate maximization while providing quality-of-service to all the users in the communication network. A novel resource allocation multi-objective-optimization-problem (MOOP) is designed which optimizes the downlink beamformer, the beamwidth angle, and the 3D position of the UAV, and also the UL power of the FD users. The formulated MOOP is a non-convex problem which is generally intractable. To handle the MOOP, a weighted Tchebycheff method is proposed, which converts the problem to the single-objective-optimization-problem (SOOP). Further, an alternative optimization approach is used, where SOOP is converted in to multiple sub-problems and optimization variables are operated alternatively. The numerical results show a trade-off region between sum UL and sum DL rate, and also validate that the considered FD system provides substantial improvement over traditional HD systems.
Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by self-interference (SI). This is because a FD node’s transmitting signal generates significant interference to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain. This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can change both the amplitude and phase of the wireless signal and send different data streams from each antenna element. Our goal in this paper is to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups. To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna FD solution to a hybrid beamforming architecture and compare the corresponding performance metrics leveraging a fully programmable many-antenna testbed and collecting over-the-air wireless channel data. We show that SI cancellation through beam design on a hybrid beamforming radio architecture can achieve capacity within 16% of that of a fully digital architecture. The performance gap further shrinks with a higher number of quantization bits in the hybrid beamforming system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.