Pseudin-2 is a cationic alpha-helical peptide that was first isolated from the skin of the paradoxical frog Pseudis paradoxa on the basis of its antimicrobial activity. We have investigated the insulin-releasing properties and cytotoxicity of the peptide, together with selected analogues with increased cationicity and hydrophobicity. At concentrations in the range 10(-9)-10(-6) m, pseudin-2, and its [Lys18], [Phe8], and [d-Lys3,d-Lys10,d-Lys14] derivatives, stimulated insulin release from the BRIN-BD11 clonal beta-cell line without increasing release of lactate dehydrogenase. The [Lys18] analogue was the most potent (46% increase in insulin release at 10(-9) m) and the most effective (215% increase in insulin release at 10(-6) m). The more cationic [Lys3,Lys10,Lys14] and [Lys3,Lys10,Lys14,Lys21] analogues lacked insulinotropic action and the more hydrophobic [Phe16] analogue was cytotoxic at concentrations > or =10(-7) m. Pseudin-2 and [Lys18]-pseudin-2 had no effect on intracellular calcium concentrations and stimulated insulin release in the absence of external calcium. [Lys18]-pseudin-2 (10(-8) m) stimulated insulin release in the presence of diazoxide and verapamil. Our results demonstrate that pseudin-2 stimulates insulin secretion from BRIN-BD11 cells by a mechanism involving Ca2+-independent pathways and identify [Lys18]-pseudin-2 as a peptide that may have potential for development as a therapeutically valuable insulinotropic agent for the treatment of type 2 diabetes.
Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.
Graphical abstract
Herein we report in a sample of healthy young men (n=14) and women (n=12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized this prominent peripheral vasodilation is possibly due to an ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n=9) and women (n=7) that systemic infusion of insulin blunts sympathetically-mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasodilation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.