This study investigated the roles of the melatonin signal and the circadian system in the induction of photoperiodic responses in the male Syrian hamster. Pinealectomized animals received programmed s.c. infusions of saline or melatonin. Saline infusions for 10 h or melatonin for 4 h during the night had no effect on the reproductive axis whereas nightly 10-h infusions of melatonin induced gonadal atrophy. Animals that received 10-h infusions of melatonin arranged such that consecutive daily signals were delivered alternately during the day and night also exhibited gonadal atrophy, whereas melatonin signals delivered every 48 h, exclusively during either the day or night, were without effect. These results demonstrate that the brain is able to read melatonin signals delivered at different phases of the circadian cycle and to use them in combination to generate an appropriate photoperiodic response. Melatonin signals lasting 10 h delivered to pinealectomized (PX) animals every 24 h induced gonadal regression. Melatonin delivered at periodicities of 20 h, 23 h, and 25 h also caused gonadal regression whereas infusions every 28 h were without effect, demonstrating that the systems responsive to melatonin are sensitive to signal frequency but do not need to receive the signal on a strictly circadian basis. These results are discussed in the context of the significance of the melatonin-free interval. PX animals that received sham or bilateral lesions of the suprachiasmatic nuclei (SCN) were infused nightly for 10 h with saline or melatonin. Melatonin infusions were equally effective at inducing gonadal atrophy and lowering serum testosterone levels in both sham- and SCN-lesioned animals.(ABSTRACT TRUNCATED AT 250 WORDS)
The pineal gland is a universal feature of vertebrate organization and has been implicated in the control of rhythmic adaptations to daily and seasonal cycles. This paper considers three aspects of pineal function; the generation of a rhythmical endocrine signal (the nocturnal synthesis of melatonin) and the use of the signal in the regulation of circadian and photoperiodic functions. The shape of the nocturnal signal is determined by an interaction of afferent neural control and biochemical processes intrinsic to the pinealocyte. The nature of the effect of the signal upon circadian systems is unclear, and in adult mammals may not be a specific, direct influence upon the entrainment pathways of the oscillator. In the foetus, strong evidence exists for a physiological role of the maternal melatonin signal as a true internal zeitgeber, remnants of which may persist in the adult. Photoperiodic time measurement in adult and foetal mammals is critically dependent upon the melatonin signal. Indirect evidence indicates that several neural systems may be involved in the response to melatonin and consistent with this, a variety of central melatonin binding sites have been identified in the brain and pituitary. The intra-cellular actions of melatonin and the properties of melatonin responsive neural systems have yet to be identified, but in the context of photoperiodic time measurement, it is clear that the neural responses to melatonin are not dependent upon the circadian clock. The two central effects of melatonin; photoperiodic time measurement and circadian entrainment are probably mediated through completely separate mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.