Troell, M. et al. (2006). Abalone farming in South Africa: an overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. AQUACULTURE, University AbstractThe South African abalone cultivation industry has developed rapidly and is now the largest producer outside Asia. With a rapid decline in wild abalone fisheries, farming now dominates the abalone export market in South Africa. Kelp (Ecklonia maxima) constitutes the major feed for farmed abalone in South Africa, but this resource is now approaching limits of sustainable harvesting in kelp Concession Areas where abalone farms are concentrated. This paper gives an overview of the development of the South African abalone industry and analyses how abalone farming, natural kelp beds and seaweed harvesting are interlinked. It discusses options and constraints for expanding the abalone industry, focussing especially on abalone feed development to meet this growing demand. Kelp will continue to play an important role as feed and kelp areas previously not utilised may become cost-effective to harvest. There are many benefits from onfarm seaweed production and it will probably be a part of future expansion of the abalone industry. Abalone waste discharges are not at present regarded as a major concern and farming brings important employment opportunities to lower income groups in remote coastal communities and has positive spill-over effects on the seaweed industry and abalone processing industry.
Rhodoliths are one of the most extensive benthic communities of the Brazilian continental shelf, but their structure is poorly known. The richest marine flora of Brazil´ s coastal zone is found in Espírito Santo State and its diversity has been partly associated with the presence of extensive areas of rhodoliths, extending from the intertidal zone to 120 m across the continental shelf. One species of kelp, Laminaria abyssalis, is endemic to this area and occurs between 45 and 120 m depth. Our objective was to determine the density and physical dimensions of the superficial rhodoliths between 4 and 55 m depth in the southern region of Espírito Santo State. The study area was 3 to 45 km offshore. Samples were obtained in 2004 and 2005 by Scuba diving in three depth zones: 4–18 m, 25–30 m and 50–55 m. Transect lines and video images were used to determine rhodolith density. The diameter and sphericity of at least 60 individuals from each zone were measured. Rhodolith size increased and density decreased from the shallow to the deeper zones. Spheroidal was the typical shape throughout the depth zones. Five rhodolith-forming genera were identified: Lithothamnion, Lithophyllum, Hydrolithon, Neogoniolithon and Sporolithon. Epibenthic biomass and species richness over the rhodolith bed in the shallow zone was lowest in winter, likely the result of disturbance caused by typical winter storms. Changes in light and temperature are probably the most important factors in the changes observed in the rhodolith beds from the deepest zones.
A multi-gene (SSU, LSU, psbA, and COI) molecular phylogeny of the family Corallinaceae (excluding the subfamilies Lithophylloideae and Corallinoideae) showed a paraphyletic grouping of six monophyletic clades. Pneophyllum and Spongites were reassessed and recircumscribed using DNA sequence data integrated with morpho-anatomical comparisons of type material and recently collected specimens. We propose Chamberlainoideae subfam. nov., including the type genus Chamberlainium gen. nov., with C. tumidum comb. nov. as the generitype, and Pneophyllum. Chamberlainium is established to include several taxa previously ascribed to Spongites, the generitype of which currently resides in Neogoniolithoideae. Additionally we propose two new genera, Dawsoniolithon gen. nov. (Metagoniolithoideae), with D. conicum comb. nov. as the generitype and Parvicellularium gen. nov. (subfamily incertae sedis), with P. leonardi sp. nov. as the generitype. Chamberlainoideae has no diagnostic morpho-anatomical features that enable one to assign specimens to it without DNA sequence data, and it is the first subfamily to possess both Type 1 (Chamberlainium) and Type 2 (Pneophyllum) tetra/bisporangial conceptacle roof development. Two characters distinguish Chamberlainium from Spongites: tetra/biasporangial conceptacle chamber diameter (<300 μm in Chamberlainium vs. >300 μm in Spongites) and tetra/bisporangial conceptacle roof thickness (<8 cells in Chamberlainium vs. >8 cells in Spongites). Two characters also distinguish Pneophyllum from Dawsoniolithon: tetra/bisporangial conceptacle roof thickness (<8 cells in Pneophyllum vs. >8 cells in Dawsoniolithon) and thallus construction (dimerous in Pneophyllum vs. monomerous in Dawsoniolithon).
ABSTRACT. This study describes the predominantly tropical, subtidal seaweed populations growing on rhodoliths between 4 and 18 m depth in the southern part of Espírito Santo State (Brazil). Qualitative and quantitative sampling revealed species-rich algal communities, comprising 167 species. Three species of rhodophytes represent new records for the Brazilian marine flora (Lithothamnion muelleri, Scinaia aborealis, and Mesophyllum engelhartii). Marked seasonal differences in fleshy algal species composition and abundance were related to seasonal instabilities caused by winter-storm disturbance over the rhodolith beds. In relation to depth, rhodolith density appears to be an important factor for the variation in the abundance of fleshy algae. The rhodolith community is composed of at least seven nongeniculate crustose coralline algal species. Rhodolith beds in southern Espírito Santo State, in an area of 150 km 2 , provide an important habitat for epibenthic communities, supporting 25% of the known macroalgal species richness along the Brazilian coast.Key words: rhodoliths, marine algae of Brazil, benthic algal community, Espírito Santo State, crustose coralline algae. RESUMEN.Se describen las poblaciones de las macroalgas submareales predominantemente tropicales que crecen sobre rodolitos entre 4 y 18 m de profundidad en la parte sur del estado de Espírito Santo (Brasil). Muestreos cualitativos y cuantitativos revelaron comunidades ricas en especies de algas, incluyendo 167 especies. Tres especies de rodofitas son nuevas adiciones a la flora marina de Brasil (Lithothamnion muelleri, Scinaia aborealis y Mesophyllum engelhartii). Las marcadas diferencias estacionales en la composición y abundancia de especies de algas carnosas se relacionaron con la inestabilidad causada por el disturbio de tormentas invernales sobre los mantos de rodolitos. En cuanto a la profundidad, la densidad de rodolitos parece ser un factor importante para la variación en la abundancia de algas carnosas. La comunidad de rodolitos está formada por al menos siete especies de algas coralinas no geniculadas. Se demostró que los mantos de rodolitos, en un área de 150 km 2 , proporcionan un hábitat importante para las comunidades bentónicas, manteniendo 25% de la riqueza de especies de macroalgas conocidas para la costa brasileña.Palabras clave: rodolitos, algas marinas de Brasil, comunidad algal bentónica, estado de Espírito Santo, algas coralinas incrustantes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.