Previous reports demonstrated that adult stem/progenitor cells from bone marrow (multipotent mesenchymal stem cells; MSCs) can repair injured tissues with little evidence of engraftment or differentiation. In exploring this phenomenon, our group has recently discovered that the therapeutic benefits of MSCs are in part explained by the cells being activated by signals from injured tissues to express an anti-inflammatory protein TNF-α-stimulated gene/protein 6 (TSG-6). Therefore, we elected to test the hypothesis that TSG-6 would have therapeutic effects in inflammatory but noninfectious diseases of the corneal surface. We produced a chemical and mechanical injury of the cornea in rats by brief application of 100% ethanol followed by mechanical debridement of corneal and limbal epithelium. Recombinant human TSG-6 or PBS solution was then injected into the anterior chamber of the eye. TSG-6 markedly decreased corneal opacity, neovascularization, and neutrophil infiltration. The levels of proinflammatory cytokines, chemokines, and matrix metalloproteinases were also decreased. The data indicated that TSG-6, a therapeutic protein produced by MSCs in response to injury signals, can protect the corneal surface from the excessive inflammatory response following injury.inflammation | TNF-α-stimulated protein 6 | mesenchymal stem cells | neutrophil | matrix metalloproteinase
Previous reports demonstrated that the deleterious effects of chemical injury to the cornea were ameliorated by local or systemic administration of adult stem/progenitor cells from bone marrow referred to as mesenchymal stem or stromal cells (MSCs). However, the mechanisms for the beneficial effects of MSCs on the injured cornea were not clarified. Herein, we demonstrated that human MSCs (hMSCs) were effective in reducing corneal opacity and inflammation without engraftment after either intraperitoneal (i.p.) or intravenous (i.v.) administration following chemical injury to the rat cornea. A quantitative assay for human mRNA for glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) demonstrated that less than 10 hMSCs were present in the corneas of rats 1‐day and 3 days after i.v. or i.p. administration of 1 × 107 hMSCs. In vitro experiments using a transwell coculture system demonstrated that chemical injury to corneal epithelial cells activated hMSCs to secrete the multipotent anti‐inflammatory protein TNF‐α stimulated gene/protein 6 (TSG‐6). In vivo, the effects of i.v. injection of hMSCs were largely abrogated by knockdown of TSG‐6. Also, the effects of hMSCs were essentially duplicated by either i.v. or topical administration of TSG‐6. Therefore, the results demonstrated that systemically administered hMSCs reduce inflammatory damage to the cornea without engraftment and primarily by secretion of the anti‐inflammatory protein TSG‐6 in response to injury signals from the cornea. STEM CELLS 2011;29:1572–1579
Mesenchymal stem/progenitor cells (MSCs) were reported to enhance the survival of cellular and organ transplants. However, their mode of action was not established. We here used a mouse model of corneal allotransplantation and demonstrated that peri-transplant intravenous (i.v.) infusion of human MSCs (hMSCs) decreased the early surgically induced inflammation and reduced the activation of antigen-presenting cells (APCs) in the cornea and draining lymph nodes (DLNs). Subsequently, immune rejection was decreased, and allograft survival was prolonged. Quantitative assays for human GAPDH revealed that <10 hMSCs out of 1 × 10(6) injected cells were recovered in the cornea 10 hours to 28 days after i.v. infusion. Most of hMSCs were trapped in lungs where they were activated to increase expression of the gene for a multifunctional anti-inflammatory protein tumor necrosis factor-α stimulated gene/protein 6 (TSG-6). i.v. hMSCs with a knockdown of TSG-6 did not suppress the early inflammation and failed to prolong the allograft survival. Also, i.v. infusion of recombinant TSG-6 reproduced the effects of hMSCs. Results suggest that hMSCs improve the survival of corneal allografts without engraftment and primarily by secreting TSG-6 that acts by aborting early inflammatory responses. The same mechanism may explain previous reports that MSCs decrease rejection of other organ transplants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.