species, display a remarkable diversity of reproductive modes -aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well-resolved phylogeny from which we determine major patterns of reproductive-mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral-state reconstructions suggest that terrestrial gel-encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of terrestrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being terrestrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. Evolution from a fully aquatic reproductive mode to more terrestrial modes (direct development and foam nesting) occurs through intermediate gel nesting ancestral forms. This suggests that gel nesting is not only a possible transitional state for the evolution of terrestriality, but also that it is a versatile reproductive mode that may give rise to other terrestrial reproductive modes. Evolution of foam nesting may have enabled rhacophorids to lay a larger number of eggs in more open and drier habitats, where protection from desiccation is important. Terrestrial direct development allows frogs to lay eggs independent of bodies of water, in a diversity of humid habitats, and may represent a key innovation that facilitated the evolution of nearly half of all known rhacophorid species.
A systematic revision of the genus Hylarana in the Western Ghats-Sri Lanka biodiversity hotspot is presented. Species delineation in Hylarana is complicated due to a lack of distinct colour differences or striking morphological characters, leading to potential misidentification. We conducted extensive surveys throughout the Western Ghats-Sri Lanka biodiversity hotspot and performed multiple gene (16S, COI and Cytb) barcoding using 103 samples collected from cultivated land and natural habitats. Genetic distance comparisons and Neighbor Joining trees indicated the presence of at least 14 candidate species in the region, supported by taxa groupings for all three genetic markers. Utilising a combination of molecular and morphological data, we describe seven new species, doubling the number of Hylarana species previously known from this region. We further demonstrate that H. temporalis, which was originally described from Sri Lanka, was misidentified with the Western Ghats endemic species for nearly 100 years. Conversely, H. aurantiaca was originally described from the Western Ghats and misidentified in Sri Lanka. Our study confirms that the distribution of H. temporalis is restricted to Sri Lanka, while H. aurantiaca is endemic to the Western Ghats, and that there are no shared Hylarana species between the two regions. Hylarana flavescens, H. intermedius and H. montanus, previously considered synonyms of H. temporalis are confirmed as valid species. Hylarana bhagmandlensis is removed from the synonymy of H. aurantiaca and placed as a junior subjective synonym of H. montanus. To establish nomenclatural stability, H. flavescens, H. malabarica and H. temporalis are lectotypified and H. intermedius is neotypified. Detailed descriptions, diagnosis, morphological and genetic comparisons, illustrations and data on distribution and natural history are provided for all species. Phylogenetic analyses based on three mitochondrial markers (16S, COI and Cytb) and a fragment of the nuclear Rag1 gene, show complete endemism of the Western Ghats-Sri Lankan species. Four major groups in this region are identified as: 1 — the Hylarana aurantiaca group, endemic to the Western Ghats; 2 — the Hylarana flavescens group, endemic to the Western Ghats; 3 — the Hylarana temporalis group, endemic to Sri Lanka; and 4 — the Hylarana malabarica group from Sri Lanka and India. The discovery of numerous morphologically cryptic Hylarana species in this region further emphasizes the benefits of utilizing an integrative taxonomic approach for uncovering hidden diversity and highlighting local endemism in the Western Ghats-Sri Lanka biodiversity hotspot.
Background Natural model systems are indispensable for exploring adaptations in response to environmental pressures. Sinocyclocheilus of China, the most diverse cavefish clade in the world (75 species), provide unique opportunities to understand recurrent evolution of stereotypic traits (such as eye loss and sensory expansion) in the context of a deep and diverse phylogenetic group. However, they remain poorly understood in terms of their morphological evolution. Therefore, we explore key patterns of morphological evolution, habitat utilization and geographic distribution in these fishes. Results We constructed phylogenies and categorized 49 species based on eye-related condition (Blind, Micro-eyed, and Normal-eyed), habitat types (Troglobitic—cave-restricted; Troglophilic—cave-associated; Surface—outside caves) and existence of horns. Geometric-morphometric analyses show Normal-eyed morphs with fusiform shapes segregating from Blind/Micro-eyed deeper bodied morphs along the first principal-component axis; second axis accounts for shape complexity related to horns. The body shapes showed a significant association with eye-related condition and horn, but not habitat types. Ancestral reconstructions suggest at least three independent origins of Blind morphs, each with different levels of modification in relation to their ancestral Normal-eyed morphs; Sinocyclocheilus are also pre-adapted for cave dwelling. Our geophylogeny shows an east-to-west diversification spanning Pliocene and Pleistocene, with early-diversifying Troglobitic species dominating subterranean habitats of karstic plains whereas predominantly Surface forms inhabit hills to the west. Evolutionary rates analyses suggest that lineages leading to Blind morphs were characterized by significant rate shifts, such as a slowdown in body size evolution and a 5–20 fold increase in rate of eye regression, possibly explained by limited resource availability. Body size and eye size have undergone reversals, but not horns, a trait entailing considerable time to form. Conclusions Sinocyclocheilus occupied cave habitats in response to drying associated with aridification of China during late Miocene and the Pliocene. The prominent cave-adaptations (eye-regression, horn-evolution) occur in clades associated with the extensive subterranean cave system in Guangxi and Guizhou provinces. Integration of morphology, phylogeny, rate analyses, molecular-dating and distribution show not only several remarkable patterns of evolution, but also interesting exceptions to these patterns signifying the diversification of Sinocyclocheilus as an invaluable model system to explore evolutionary novelty.
Despite renewed interest in the biogeography and evolutionary history of Old World tree frogs (Rhacophoridae), this family still includes enigmatic frogs with ambiguous phylogenetic placement. During fieldwork in four northeastern states of India, we discovered several populations of tree hole breeding frogs with oophagous tadpoles. We used molecular data, consisting of two nuclear and three mitochondrial gene fragments for all known rhacophorid genera, to investigate the phylogenetic position of these new frogs. Our analyses identify a previously overlooked, yet distinct evolutionary lineage of frogs that warrants recognition as a new genus and is here described as Frankixalus gen. nov. This genus, which contains the enigmatic ‘Polypedates’ jerdonii described by Günther in 1876, forms the sister group of a clade containing Kurixalus, Pseudophilautus, Raorchestes, Mercurana and Beddomixalus. The distinctiveness of this evolutionary lineage is also corroborated by the external morphology of adults and tadpoles, adult osteology, breeding ecology, and life history features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.