Short-chain chlorinated paraffins (SCCPs) cause kidney tumours in male rats, but not in female rats or mice of either sex. Male rat-specific tumours also occur in rats dosed with a range of compounds including 1,4- dichlorobenzene (DCB) and d-limonene (DL). These compounds bind to a male rat-specific hepatic protein, alpha-2-urinary globulin (α2u), and form degradationresistant complexes in the kidney. The resulting accumulation of α2u causes cell death and sustained regenerative cell proliferation, which in turn leads to the formation of renal tumours. To investigate whether the SCCP, Chlorowax 500C (C500C), causes tumours via the accumulation of α2u male rats were orally dosed with either C500C (625 mg/kg of body weight), DCB (300 mg/kg of body weight), or DL (150 mg/kg of body weight) for 28 consecutive days. An increase in renal α2u and cell proliferation was observed in DCB- and DL-treated rats but not in C500C-treated rats. C500C caused peroxisome proliferation and a down-regulation of α2u synthesis in male rat liver. This down-regulation occurred at the transcriptional level. Since less α2u was produced in C500C-treated rats, there was less available for accumulation in the kidney hence a typical α2u nephropathy did not appear. However, the administration of a radiolabelled SCCP, [14C]polychlorotridecane (PCTD), to male rats demonstrated its binding to renal α2u. Thus, it is possible that SCCPs bind to α2u and cause a slow accumulation of the protein in the kidney followed by delayed onset of α2u nephropathy. As a consequence of these findings in the current experiments, while evidence exists implicating α2u-globulin in the molecular mechanism of action of the C500C, the classic profile of a α2u-globulin nephropathy seen with other chemicals such as DCB and DL was not reproduced during this experimental protocol.
PDGF is a potent chemotactic mitogen and a strong inductor of fibroblast motility. In Swiss 3T3 fibroblasts, exposure to PDGF but not EGF or IGF-1 causes a rapid loss of actin stress fibers (SFs) and focal adhesions (FAs), which is followed by the development of retractile dendritic protrusions and induction of motility. The PDGFspecific actin reorganization was blocked by inhibition of Src-kinase and the 26S proteasome. PDGF induced Src-dependent association between the multifunctional transcription/translation regulator hnRNP-K and the mRNA-encoding myosin regulatory light-chain (MRLC)-interacting protein (MIR), a E 3 -ubiquitin ligase that is MRLC specific. This in turn rapidly increased MIR expression, and led to ubiquitination and proteasome-mediated degradation of MRLC. Downregulation of MIR by RNA muting prevented the reorganization of actin structures and severely reduced the migratory and wound-healing potential of PDGF-treated cells. The results show that activation of MIR and the resulting removal of diphosphorylated MRLC are essential for PDGF to instigate and maintain control over the actin-myosin-based contractile system in Swiss 3T3 fibroblasts. The PDGF induced protein destabilization through the regulation of hnRNP-K controlled ubiquitin -ligase translation identifies a novel pathway by which external stimuli can regulate phenotypic development through rapid, organelle-specific changes in the activity and stability of cytoskeletal regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.