We have previously identified and purified multipotent mesenchymal stromal cell (MSC)-like cells in the highly regenerative endometrial lining of the human uterus (eMSC) as CD140b⁺CD146⁺ cells. Due to ease of accessibility with minimal morbidity via biopsy, we are proposing to use eMSC in cell-based therapies; however, culture conditions compliant with Good Manufacturing Practice have not been established for eMSC. The aim of this study was to optimize serum-free and xeno-free culture conditions for expansion of eMSC for potential clinical use. Real-time cell assessment (Xcelligence) and MTS viability assays were used to measure attachment and proliferation of freshly isolated, flow cytometry-sorted CD140b⁺CD146⁺ eMSC cultured in several commercially available and in-house serum-free and xeno-free media in combination with five attachment matrices (fibronectin, collagen, gelatin, laminin, and Cell Start-XF®). Comparisons were made with a standard serum-containing medium, DMEM/F-12/10% fetal bovine serum. Under all conditions examined, eMSC attachment and proliferation was greatest using a fibronectin matrix, with Lonza TP-SF® and our in-house DMEM/SF/FGF2/EGF serum-free xeno-product-containing medium similar to serum-containing medium. Hypoxia increased eMSC proliferation in the DMEM/SF/FGF2/EGF serum-free medium. Culture of eMSC for 7 days on a fibronectin matrix in DMEM/SF/FGF2/EGF serum-free media in 5% O₂ maintained greater numbers of undifferentiated eMSC expressing CD140b, CD146, and W5C5 compared to culture under similar conditions in Lonza TP-SF medium. However, the percentage of cells expressing typical MSC phenotypic markers, CD29, CD44, CD73, and CD105, were similar for both media. EMSC showed greater expansion in 2D compared to 3D culture on fibronectin-coated microbeads using the optimized DMEM/SF/FGF2/EGF medium in 5% O₂. In the optimized 2D culture conditions, eMSC retained CFU activity, multipotency, and MSC surface phenotype, representing the first steps in their preparation for potential clinical use.
Homeobox genes are a large family of transcription factors. Of these, the HLX homeobox gene (previously known as HLX1 and HB24) is important for normal placentation. We have previously shown that HLX mRNA expression is significantly reduced in fetal growth-restricted human placentae compared with control placentae. In this study, a rabbit polyclonal antibody to the homeodomain protein HLX was raised and characterised. Western analysis revealed a protein of 50 kDa. HLX protein was detected in cellular nuclei in the cytotrophoblast-derived cell lines HTR8/SVneo, SGHPL-4, JEG-3, JAR and BeWo. Dual labelling with cytokeratin 7 was used to determine the spatial distribution of HLX in the early placenta and fetal membranes, showing both a perinuclear and punctate nuclear distribution for HLX. In the early pregnancy placenta HLX was localised to villous cytotrophoblast, and extravillous cytotrophoblast nuclei in the proximal regions of the cytotrophoblast cell columns, but was not detected at significant levels in the syncytiotrophoblast. In first trimester placental bed biopsies, HLX expression was not localised to the nucleus but instead was found in the cytoplasm. We conclude that HLX is primarily expressed in cytotrophoblast cell types in the human placenta and propose that HLX is involved in cytotrophoblast proliferation and downregulation of cell differentiation.
Fetal growth restriction (FGR) , a clinically significant pregnancy disorder , is poorly understood at the molecular level. This study investigates idiopathic FGR associated with placental insufficiency. Previously, we showed that the homeobox gene HLX is expressed in placental trophoblast cells and that HLX expression is significantly decreased in human idiopathic FGR. Here , we used the novel approach of identifying downstream targets of HLX in cell culture to detect potentially important genes involved in idiopathic FGR. Downstream targets were revealed by decreasing HLX expression in cultured trophoblast cells with HLX-specific small interfering RNAs to model human idiopathic FGR and comparing these levels with controls using a real-time PCR-based gene profiling system. Changes in candidate HLX target mRNA levels were verified in an independent trophoblast cell line, and candidate target gene expression was assessed in human idiopathic FGR-affected placentae (n ؍ 25) compared with gestation-matched controls (n ؍ 25). The downstream targets RB1 and MYC , cell cycle regulatory genes , showed significantly increased mRNA levels in FGR-affected tissues compared with gestation-matched controls , whereas CCNB1 , ELK1 , JUN , and CDKN1 showed significantly decreased mRNA levels (n ؍ 25 , P < 0.001 , t-test). The changes for RB1 and CDKN1C were verified by Western blot analysis in FGR-affected placentae compared with gestation-matched controls (n ؍ 6). We conclude that cell cycle regulatory genes RB1 , MYC , CCNB1 , ELK1 , JUN , and CDKN1C , which control important trophoblast cell functions , are targets of HLX. (Am J
Fetal growth restriction (FGR) is a clinically significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. Most cases of FGR are idiopathic and are associated with placental thrombosis. Previous studies suggest that proteoglycans, such as decorin, that contain the glycosaminoglycan dermatan sulfate are the principal anticoagulants in the normal placenta. The present study investigated decorin expression in placentas from pregnancies complicated by idiopathic FGR (n = 26) and gestation-matched controls (n = 27). Real-time polymerase chain reaction demonstrated significantly reduced decorin mRNA expression in FGR compared with control (1.52 +/- 0.14 v. 2.21 +/- 0.22, respectively; P < 0.01). Immunoblotting revealed decreased decorin protein (40 kDa) expression in FGR compared with controls (420.8 +/- 39.0 v. 690.1 +/- 42.2, respectively; n = 12 in each group; P = 0.0007). Immunohistochemistry demonstrated the presence of immunoreactive decorin protein in the placental villous stroma surrounding the fetal capillaries and a significant decrease in decorin protein presence in FGR compared with control (1.75 +/- 0.66 v. 2.98 +/- 1.12, respectively; n = 6 in each group; P < 0.01, t-test). This is the first study to demonstrate reduced decorin in idiopathic FGR, indicating a potentially significant role for decorin in the aetiology of placental thrombosis in idiopathic FGR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.