A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S5methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.
We have generated transgenic mice ubiquitously expressing the human receptor for measles virus (MV), CD46 (membrane cofactor protein). Various cell types were isolated from these transgenic mice and analyzed for their ability to support MV replication in vitro. Although MV could enter into all CD46-expressing cells, differential susceptibilities to MV infection were detected depending on the cell type. Cell cultures obtained from transgenic lungs and kidneys were found to be permissive of MV infection, since RNA specific for MV genes was detected and viral particles were released, although at a low level. Similarly to human lymphocytes, activated T and B lymphocytes isolated from transgenic mice could support MV replication; virus could enter, transcribe viral RNA, and produce new infectious particles. When expressing viral proteins, lymphocytes down-regulated CD46 from the surface. Interestingly, while activated T lymphocytes from nontransgenic mice did not support MV infection, activated nontransgenic murine B lymphocytes replicated MV as well as transgenic B lymphocytes, suggesting the use of an alternative virus receptor for entry. In contrast to the previous cell types, murine peritoneal and bone marrow-derived macrophages, regardless of whether they were activated, could not support MV replication. Furthermore, although MV entered into macrophages and virus-specific RNA transcription occurred, no virus protein or infectious virus particles could be detected. These results show the importance of the particular cell-type-specific host factors for MV replication in murine cells which may be responsible for the differential permissivity of MV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.