Persons with post-stroke visuospatial neglect (VSN) often collide with moving obstacles while walking. It is not well understood whether the collisions occur as a result of attentional-perceptual deficits caused by VSN or due to post-stroke locomotor deficits. We assessed individuals with VSN on a seated, joystick-driven obstacle avoidance task, thus eliminating the influence of locomotion. Twelve participants with VSN were tested on obstacle detection and obstacle avoidance tasks in a virtual environment that included three obstacles approaching head-on or 30 (°) contralesionally/ipsilesionally. Our results indicate that in the detection task, the contralesional and head-on obstacles were detected at closer proximities compared to the ipsilesional obstacle. For the avoidance task collisions were observed only for the contralesional and head-on obstacle approaches. For the contralesional obstacle approach, participants initiated their avoidance strategies at smaller distances from the obstacle and maintained smaller minimum distances from the obstacles. The distance at detection showed a negative association with the distance at the onset of avoidance strategy for all three obstacle approaches. We conclusion the observation of collisions with contralesional and head-on obstacles, in the absence of locomotor burden, provides evidence that attentional-perceptual deficits due to VSN, independent of post-stroke locomotor deficits, alter obstacle avoidance abilities.
Individuals with VSN demonstrate cognitive-locomotor interference under dual task conditions, which could severely compromise safety when ambulating in community environments and may explain the poor recovery of independent community ambulation in these individuals.
BackgroundFor safe ambulation in the community, detection and avoidance of static and moving obstacles is necessary. Such abilities may be compromised by the presence of visuospatial neglect (VSN), especially when the obstacles are present in the neglected, i.e. contralesional field.MethodsTwelve participants with VSN were tested in a virtual environment (VE) for their ability to a) detect moving obstacles (perceptuo-motor task) using a joystick with their non-paretic hand, and b) avoid collision (locomotor task) with moving obstacles while walking in the VE. The responses of the participants to obstacles approaching on the contralesional side and from head-on were compared to those during ipsilesional approaches.ResultsUp to 67 percent of participants (8 out of 12) collided with either contralesional or head-on obstacles or both. Delay in detection (perceptuo-motor task) and execution of avoidance strategies, and smaller distances from obstacles (locomotor task) were observed for colliders compared to non-colliders. Participants’ performance on the locomotor task was not explained by clinical measures of VSN but slower walkers displayed fewer collisions.ConclusionPersons with VSN are at the risk of colliding with dynamic obstacles approaching from the contralesional side and from head-on. Locomotor-specific assessments of navigational abilities are needed to appreciate the recovery achieved or challenges faced by persons with VSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.