Chronic inhalation of crystalline silica is an occupational hazard that results in silicosis due to the toxicity of silica particles to lung cells. Alveolar macrophages play an important role in clearance of these particles, and exposure of macrophages to silica particles causes cell death and induction of markers of apoptosis. Using time-lapse imaging of MH-S alveolar macrophages, a temporal sequence was established for key molecular events mediating cell death. The results demonstrate that 80 % of macrophages die by apoptosis and 20 % by necrosis by clearly distinguishable pathways. The earliest detectable cellular event is phago-lysosomal leakage, which occurs between 30 and 120 min after particle uptake in both modes of death. Between 3 and 6 h later, cells undergoing apoptosis showed a dramatic increase in mitochondrial transmembrane potential, closely correlated with activation of both caspase-3 and 9 and cell blebbing. Externalization of phosphatidyl serine and nuclear condensation occurred 30 min-2 h after the initiation of cell blebbing. Cells undergoing necrosis demonstrated mitochondrial membrane depolarization but not hyperpolarization and no caspase activation. Cell swelling followed the decrease in mitochondrial membrane potential, distinguishing necrosis from apoptosis. All cells undergoing apoptosis followed the same temporal sequence, but the time lag between phago-lysosomal leakage and the other events was highly variable from cell to cell. These results demonstrate that crystalline silica exposure can result in either apoptosis or necrosis and each occurs in a well-defined but temporally variable order. The long time gap between phago-lysosomal leakage and hyperpolarization is not consistent with a simple scenario of phago-lysosomal leakage leading directly to cell death. The results highlight the importance of using a cell by cell time-lapse analysis to investigate a complex pathway such as silica induced cell death.
Silicosis is a chronic lung disease induced by the inhalation of crystalline silica. Exposure of cultured macrophages to crystalline silica leads to cell death; however, the mechanism of cell-particle interaction, the fate of particles, and the cause of death are unknown. Time-lapse imaging shows that mouse macrophages avidly bind particles that settle onto the cell surface and that cells also extend protrusions to capture distant particles. Using confocal optical sectioning, silica particles were shown to be present within the cytoplasmic volume of live cells. In addition, electron microscopy and elemental analysis showed silica in internal cellular sections. To further examine the phagocytosis process, the kinetics of particle uptake was quantified using an assay in which cells were exposed to ovalbumin (OVA)-coated particles, and an anti-OVA antibody was used to distinguish surface-bound from internalized particles. Fc receptor-mediated uptake of antibody-coated silica particles was nearly complete within 5 minutes. In contrast, no OVA-coated particles were internalized at this time. After 30 minutes, 30% of bound silica was internalized and uptake continued slowly thereafter. OVA-coated latex beads, regardless of surface charge, were internalized at a similarly slow rate. These results demonstrate that macrophages internalize silica and that nonopsonized phagocytosis occurs by a temporally, and possibly mechanistically, distinct pathway from Fc receptor-mediated phagocytosis. Eighty percent of macrophages die within 12 hours of silica exposure. Neither OVA coating nor tetramethylrhodamine isothiocyanate labeling has any effect on cell death. Interestingly, antibody coating dramatically reduces silica toxicity. We hypothesize that the route of particle entry and subsequent phagosome trafficking affects the toxicity of internalized particles.
The kidney is the most commonly transplanted solid organ. Advances in surgical techniques, immunosuppression regimens, surveillance imaging, and histopathologic diagnosis of rejection have allowed prolonged graft survival times. However, the demand for kidneys continues to outgrow the available supply, and there are efforts to increase use of donor kidneys with moderate-or highrisk profiles. This highlights the importance of evaluating the renal transplant patient in the context of both donor and recipient risk factors. Radiologists play an integral role within the multidisciplinary team in care of the transplant patient at every stage of the transplant process. In the immediate postoperative period, duplex US is the modality of choice for evaluating the renal allograft. It is useful for establishing a baseline examination for comparison at future surveillance imaging. In the setting of allograft dysfunction, advanced imaging techniques including MRI or contrastenhanced US may be useful for providing a more specific diagnosis and excluding nonrejection causes of renal dysfunction. When a pathologic diagnosis is deemed necessary to guide therapy, USguided biopsy is a relatively low-risk, safe procedure. The range of complications of renal transplantation can be organized temporally in relation to the time since surgery and/or according to disease categories, including immunologic (rejection), surgical or iatrogenic, vascular, urinary, infectious, and neoplastic complications. The unique heterotopic location of the renal allograft in the iliac fossa predisposes it to a specific set of complications. As imaging features of infection or malignancy may be nonspecific, awareness of the patient's risk profile and time since transplantation can be used to assign the probability of a certain diagnosis and thus guide more specific diagnostic workup. It is critical to understand variations in vascular anatomy, surgical technique, and independent donor and recipient risk factors to make an accurate diagnosis and initiate appropriate treatment. ©
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.