Graphene derivatives are effective nanofillers for the enhancement of the matrix mechanical properties; nonetheless, graphene oxide (GO), reduced GO, and exfoliated graphene all present distinct advantages and disadvantages. In this study, polyvinyl alcohol (PVA) composite fibers have been prepared using a recently reported graphene derivative, i.e., edge-selectively oxidized graphene (EOG). The PVA/EOG composite fibers were simply fabricated via conventional wet-spinning methods; thus, they can be produced at the commercial level. X-ray diffractometry, scanning electron microscopy, and two-dimensional wide-angle X-ray scattering analyses were conducted to evaluate the EOG dispersibility and alignment in the PVA matrix. The tensile strength of the PVA/EOG composite fibers was 631.4 MPa at an EOG concentration of 0.3 wt %, which is 31.4% higher compared with PVA-only fibers (480.6 MPa); compared with PVA composite fibers made with GO, which is the most famous water-dispersible graphene derivative, the proposed PVA/EOG ones exhibited about 10% higher tensile strength. Therefore, EOG can be considered an effective nanofiller to enhance the strength of PVA fibers without additional thermal or chemical reduction processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.