Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia-Gehyra nana and close relatives-we combine mtDNA phylogeography, exon-capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north-west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random.Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined.
K E Y W O R D S :Body size shifts, character displacement, cryptic diversity, morphological evolution, phylogenomics, sympatry.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna-woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock-restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra-specific clades previously shown to be endemic to the region were themselves found to contain multiple, short-range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low-dispersal taxa, even ones that are ubiquitous across geography and habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.