Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.
Amyotrophic lateral sclerosis (ALS) is a fatal non‐cell‐autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A‐ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72‐mutant patients, and the SOD1G93A‐ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS‐affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4‐dynein interaction reduces MN loss in human‐derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4‐dependent retrograde death signal that underlies MN loss in ALS.
Diabetic peripheral neuropathy (DPN) is a disabling common complication of diabetes mellitus (DM). Thrombin, a coagulation factor, is increased in DM and affects nerve function via its G-protein coupled protease activated receptor 1 (PAR1). Methods: A novel PAR1 modulator (PARIN5) was designed based on the thrombin PAR1 recognition site. Coagulation, motor and sensory function and small fiber loss were evaluated by employing the murine streptozotocin diabetes model. Results: PARIN5 showed a safe coagulation profile and showed no significant effect on weight or glucose levels. Diabetic mice spent shorter time on the rotarod (p < 0.001), and had hypoalgesia (p < 0.05), slow conduction velocity (p < 0.0001) and reduced skin innervation (p < 0.0001). Treatment with PARIN5 significantly improved rotarod performance (p < 0.05), normalized hypoalgesia (p < 0.05), attenuated slowing of nerve conduction velocity (p < 0.05) and improved skin innervation (p <0.0001). Conclusion: PARIN5 is a novel pharmacological approach for prevention of DPN development, via PAR1 pathway modulation.
Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of ALS patients, but the contribution of axonal TDP-43 to this fatal neurodegenerative disease is unclear. Here, we find TDP-43 accumulation in the axons of intra-muscular nerves from ALS patients, and in motor neurons and neuromuscular junctions (NMJs) of a mouse model with TDP-43 mislocalization. This leads to the formation of G3BP1- and TDP-43- positive RNA-granules in motor neuron axons, and to inhibition of local protein synthesis in axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondria proteins are reduced. Clearance of axonal TDP-43 restored local translation of the nuclear-encoded mitochondrial proteins and rescued TDP-43-derived axonal and NMJ toxicity. These findings suggest that targeting TDP-43 axonal gain of function may mediate a therapeutic effect in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.