BackgroundBlastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.Findings100% of the ostriches were found to be positive for Blastocystis sp. using the in-vitro cultivation method. Transmission electron microscopy revealed high electron dense material in the central body of the vacoular forms. The membrane layer of the ostrich isolate was significantly (p = 0.003) thicker as compared to human isolate. Sudan staining revealed that this was lipid accumulation. We provide evidence for the first time, the existence of subtype 6 which has been previously reported only in pigs and cattle. Cysts, ranging from 3.0 to 7.0 μm in diameter caused experimental infection in Sprague Dawley rats implicating that Blastocystis sp. isolated from ostriches exhibits low host specificity.ConclusionThe study for the first time demonstrates that Blastocystis sp. subtype 6 do exist in ostriches and show high lipid storage in the vacuoles of the parasites. The study further provides evidence for potential zoonotic transmission in ostrich farms as Blastocystis subtype 6 can infect rats and the same subtype have been previously reported in humans.
Increasing incidences of dengue have become a global health threat with major clinical manifestation including high fever and gastrointestinal symptoms. These symptoms were also expressed among Blastocystis sp. infected individuals, a parasite commonly seen in human stools. This parasite has been previously reported to replicate faster upon exposure to high temperature. The present study is a hospitalized-based cross-sectional study involved the collection of faecal sample from dengue patients. Stool examination was done by in vitro cultivation to isolate Blastocystis sp. Growth pattern of all the positive isolates were analyzed to identify the multiplication rate of Blastocystis sp. isolated from dengue patients. Distribution of Blastocystis sp. among dengue patients was 23.6%. Dengue patients who were positive for Blastocystis sp. infection denoted a significantly higher fever rate reaching 38.73°C (p<0.05) compared to the non-Blastocystis sp. infected patients (38.44°C). It was also found that Blastocystis sp. infected patients complained of frequenting the toilet more than five times a day (p<0.05) compared to those who were non-Blastocystis sp. infected. At the same time, the duration of hospitalization was significantly longer (p<0.05) for Blastocystis sp. infected dengue patients compared to the non-Blastocystis sp. infected patients. Besides, Blastocystis sp. isolated from dengue patients (in vivo thermal stress) showed a higher growth rate compared to the non-dengue isolated which was exposed to high temperature (in vitro thermal stress). Our findings suggest that presence of Blastocystis sp. during dengue infection could trigger the increase of temperature which could be due to highly elevated pro inflammatory cytokines by both parasitic and virus infection. This could justify why the temperature in Blastocystis sp. infected dengue patients is higher compared to the non-Blastocystis sp. infected patients. Higher temperature could have triggered a greater parasite multiplication rate that contributed to the aggravation of the gastrointestinal symptoms.
Blastocystis sp. is known to be the most commonly found intestinal protozoan parasite in human fecal surveys and has been incriminated to cause diarrhea and abdominal bloating. Binary fission has been widely accepted as the plausible mode of reproduction for this parasite. The present study demonstrates that subjecting the parasites in vitro to higher temperature shows the proliferation of parasite numbers in cultures. Transmission electron microscopy was used to compare the morphology of Blastocystis sp. subtype 3 isolated from a dengue patient having high fever (in vivo thermal stress) and Blastocystis sp. 3 maintained at 41 °C (in vitro thermal stress) and 37 °C (control). Fluorescence stains like acridine orange (AO) and 4',6'-diamino-2-phenylindole (DAPI) were used to demonstrate the viability and nuclear content of the parasite for both the in vitro and in vivo thermal stress groups of parasites. Blastocystis sp. at 37 °C was found to be mostly vacuolar whereas the in vitro thermal stressed isolates at 41 °C were granular with electron dense material seen to protect the granules within the central body. Parasites of the in vivo thermal stressed group showed similar ultrastructure as the in vitro ones. AO and DAPI staining provided evidence that these granules are viable which develop into progenies of Blastocystis sp. These granular forms were then observed to rupture and release progenies from the mother cells whilst the peripheral cytoplasmic walls were seen to degrade. Upon exposure to high temperature both in vitro and in vivo, Blastocystis sp. in cultures show higher number of granular forms seen to be protected by the electron dense material within the central body possibly acting as a protective mechanism. This is possibly to ensure the ability to survive for the granules to be developed as viable progenies for release into the host system.
Background: Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
The human gastrointestinal tract harbors an extremely complex and dynamic microbial community, including archaea, bacteria, viruses and eukaryota. This gut microbiota usually works with the host to promote health but can sometimes initiate or promote disease. Dysbiosis relationship in gut health indicating the role gut microbiota in promoting the development and progression of brain health. The human gut microbiota is a complex and dynamics microbial community that plays an important role in protecting the host against pathogenic microbes, modulating immunity and regulating metabolic processes. The insights can be elucidated with help of latest omics technology and animal model studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.