Pseudoachondroplasia (PSACH) and some forms of multiple epiphyseal dysplasia (MED) result from mutations in the gene encoding cartilage oligomeric matrix protein (COMP). COMP is a large pentameric glycoprotein found predominantly in the extracellular matrix of cartilage, tendon, and ligament. As a modular protein, it is composed of a coiled-coil domain, four type II (T2) repeats, eight type III (T3) repeats, and a large globular C-terminal domain (CTD). The majority (>85%) of COMP mutations causing PSACH or MED are found in the exons encoding the T3 repeats, and the disease mechanism has been characterised in detail. Much less is known about disease-causing mutations in the CTD; in 10 years only seven mutations have been identified. In this study, we describe eight novel and two recurrent mutations that we have recently identified in patients with PSACH or MED. Interestingly, these mutations result in a spectrum of disease, ranging from mild MED to severe PSACH. Mapping of all known COMP CTD mutations on a three-dimensional model of the C-terminal domain shows that the CTD mutations cluster in two distinct regions. These regions are probably important in stabilising the T3-CTD structure and mediating intra- or intermolecular interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.