The novel coronal virus has spread across more than 213 countries within the space of six months causing devastating public health hazard and monumental economic loss. In the absence of clinically approved pharmaceutical intervention, attentions are shifted to non-pharmaceutical controls to mitigate the burden of the novel pandemic. In this regard, a ten mutually exclusive compartmental mathematical model is developed to investigate possible effects of both pharmaceutical and non-pharmaceutical controls incorporating both private and government’s quarantine and treatments. Several reproduction numbers were calculated and used to determine the impact of both control measures as well as projected benefits of social distancing, treatments and vaccination. We investigate and compare the possible impact of social distancing incorporating different levels of vaccination, with vaccination programme incorporating different levels of treatment. Using the officially published South African COVID-19 data, the numerical simulation shows that the community reproduction threshold will be 30 when there is no social distancing but will drastically reduced to 5 (about 83% reduction) when social distancing is enforced. Furthermore, when there is vaccination with perfect efficacy, the community reproduction threshold will be 4 which increases to 12 (about 67% increment) with-out vaccination. We also established that the implementation of both interventions is enough to curtail the spread of COVID-19 pandemic in South Africa which is in confirmation with the recommendation of the world health organization.
In this paper, the bottom topography of a geophysical fluid flow is modelled in the presence of Coriolis force by the nonlinear shallow water equations. These equations, which are a system of three partial differential equations in two space dimensions, are solved using the perturbation method. The Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and different kind of flow patterns possible in geophysical fluid flow have been studied and the results illustrated graphically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.