New tuberculosis (TB) diagnostics are at a crossroads: their development, evaluation, and implementation is severely damaged by resource diversion due to COVID-19. Yet several technologies, especially those with potential for non-invasive non-sputum-based testing, hold promise for efficiently triaging and rapidly confirming TB near point-of-care. Such tests are, however, progressing through the pipeline slowly and will take years to reach patients and health workers. Compellingly, such tests will create new opportunities for difficult-to-diagnose populations, including primary care attendees (all-comers in high burden settings irrespective of reason for presentation) and community members (with early stage disease or risk factors like HIV), many of whom cannot easily produce sputum. Critically, all upcoming technologies have limitations that implementers and health workers need to be cognizant of to ensure optimal deployment without undermining confidence in a technology that still offers improvements over the status quo. In this state-of-the-art review, we critically appraise such technologies for active pulmonary TB diagnosis. We highlight strengths, limitations, outstanding research questions, and how current and future tests could be used in the presence of these limitations and uncertainties. Among triage tests, CRP (for which commercial near point-of-care devices exist) and computer-aided detection software with digital chest X-ray hold promise, together with late-stage blood-based assays that detect host and/or microbial biomarkers; however, aside from a handful of prototypes, the latter category has a shortage of promising late-stage alternatives. Furthermore, positive results from new triage tests may have utility in people without TB; however, their utility for informing diagnostic pathways for other diseases is under-researched (most sick people tested for TB do not have TB). For confirmatory tests, few true point-of-care options will be available soon; however, combining novel approaches like tongue swabs with established tests like Ultra have short-term promise but first require optimizations to specimen collection and processing procedures. Concerningly, no technologies yet have compelling evidence of meeting the World Health Organization optimal target product profile performance criteria, especially for important operational criteria crucial for field deployment. This is alarming as the target product profile criteria are themselves almost a decade old and require urgent revision, especially to cater for technologies made prominent by the COVID-19 diagnostic response (e.g., at-home testing and connectivity solutions). Throughout the review, we underscore the importance of how target populations and settings affect test performance and how the criteria by which these tests should be judged vary by use case, including in active case finding. Lastly, we advocate for health workers and researchers to themselves be vocal proponents of the uptake of both new tests and those – already available tests that remain suboptimally utilized.
Background: Undiagnosed tuberculosis (TB) remains a major threat for people living with HIV (PLHIV). Multiple blood transcriptomic biomarkers have shown promise for TB diagnosis. We sought to evaluate their diagnostic accuracy and clinical utility for systematic pre-antiretroviral therapy (ART) TB screening. Methods: We enrolled consecutive adults referred to start ART at a community health centre in Cape Town, South Africa, irrespective of symptoms. Sputa were obtained (using induction if required) for two liquid cultures. Whole-blood RNA samples underwent transcriptional profiling using a custom Nanostring gene-panel. We measured the diagnostic accuracy of seven candidate RNA biomarkers for positive Mycobacterium tuberculosis culture reference standard, using area under the receiver-operating characteristic curve (AUROC) analysis, and sensitivity/specificity at pre-specified thresholds (two standard scores above the mean of healthy controls; Z2). Clinical utility was assessed using decision curve analysis. We compared performance to CRP (threshold ≥5mg/L), World Health Organisation (WHO) four-symptom screen (W4SS) and the WHO target product profile for TB triage tests. Results: A total of 707 PLHIV were included, with median CD4 count 306 cells/mm3. Of 676 with available sputum culture results, 89 (13%) had culture-confirmed TB. The seven RNA biomarkers were moderately to highly correlated (Spearman rank coefficients 0.42-0.93) and discriminated TB culture-positivity with similar AUROCs (0.73-0.80), but none statistically better than CRP (AUROC 0.78; 95% CI 0.72-0.83). Diagnostic accuracy was similar across CD4 count strata, but lower among W4SS-negative (AUROCs 0.56-0.65) compared to W4SS-positive participants (AUROCs 0.75-0.84). The RNA biomarker with highest AUROC point estimate was a 4-gene signature (Suliman4; AUROC 0.80; 95% CI 0.75-0.86), with sensitivity 0.83 (0.74-0.90) and specificity 0.59 (0.55-0.63) at Z2 threshold. In decision curve analysis, Suliman4 and CRP had similar clinical utility to guide confirmatory TB testing, but both had higher net benefit than W4SS. In exploratory analyses, an approach combining CRP (≥5mg/L) and Suliman4 (≥Z2) had sensitivity of 0.80 (0.70-0.87), specificity of 0.70 (0.66-0.74) and higher net benefit than either biomarker alone. Interpretation: RNA biomarkers showed better clinical utility to guide confirmatory TB testing for PLHIV prior to ART initiation than symptom-based screening, but their performance did not exceed that of CRP, and fell short of WHO recommended targets. Interferon-independent approaches may be required to improve accuracy of host-response biomarkers to support TB screening pre-ART initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.