Poly(ester-ether-ester) block copolymers, belonging to a class of biodegradable materials, were synthesized from poly(ethylene glycol) and epsilon-caprolactone by a simple ring-opening mechanism, which avoids the use of potentially toxic inorganic or organometallic initiators. The morphological and mechanical properties of such materials were investigated by gel-permeation chromatography, vapour pressure osmometry, proton magnetic resonance, infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and stress-strain tensile tests. The biocompatibility was investigated by cytotoxicity and hemocompatibility tests; the cytotoxicity was tested by the Neutral Red uptake assay, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, the Kenacid Blue R-binding method, and by the cell proliferation test on polymer films; the hemocompatibility was tested by the contact activation both of the coagulation cascade (intrinsic pathway), by the plasma prekallikrein activation test, and of the thrombocytes, by measuring the release of platelet factor 4 and beta-thromboglobulin. The experimental results show that such a polymerization process permits high-molecular mass block copolymers with relatively good tensile and mechanical properties to be obtained. Their cyto- and hemo-compatibility makes them suitable for employment as biomaterials
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.