Herbal medicines containing emodin, widely used for the treatment of hepatitis in clinic, have been reported with hepatotoxicity in individuals. A modest inflammatory stress potentiating liver injury has been linked to the idiosyncratic drug-induced liver injury (IDILI). In this study, we investigated the hypothesis that lipopolysaccharide (LPS) interacts with emodin could synergize to cause liver injury in rats. Emodin (ranging from 20, 40, to 80 mg/kg), which is in the range of liver protection, was administered to rats, before LPS (2.8 mg/kg) or saline vehicle treatment. The biochemical tests showed that non-toxic dosage of LPS coupled with emodin caused significant increases of plasma ALT and AST activities as compared to emodin alone treated groups (P < 0.05). In addition, with LPS or emodin alone could not induce any changes in ALT and AST activity, as compared with the control group (0.5% CMC-Na treatment). Meanwhile, the plasma proinflammatory cytokines, TNF-α, IL-1β, and IL-6 increased significantly in the emodin/LPS groups compared to either emodin groups or the LPS (P < 0.05). Histological analysis showed that liver damage was only found in emodin/LPS cotreatmented rat livers samples. These results indicate that non-toxic dosage of LPS potentiates the hepatotoxicity of emodin. This discovery raises the possibility that emodin and herbal medicines containing it may induce liver injury in the inflammatory stress even in their therapeutic dosages.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease. Currently, there are no recognized medical therapies effective for NAFLD. Previous studies have demonstrated the effects of total turmeric extract on rats with NAFLD induced by high-fat diet. In this study, serum metabolomics was employed using UHPLC-Q-TOF-MS to elucidate the underlying mechanisms of HFD-induced NAFLD and the therapeutic effects of TE. Supervised orthogonal partial least-squares-discriminant analysis was used to discover differentiating metabolites, and pathway enrichment analysis suggested that TE had powerful combined effects of regulating lipid metabolism by affecting glycerophospholipid metabolism, glycerolipid metabolism, and steroid hormone biosynthesis signaling pathways. In addition, the significant changes in glycerophospholipid metabolism proteins also indicated that glycerophospholipid metabolism might be involved in the therapeutic effect of TE on NAFLD. Our findings not only supply systematic insight into the mechanisms of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.
Hematopoietic stem and progenitor cells (HSPCs) have been used successfully to treat patients with cancer and disorders of the blood and immune systems. In this study, we tried to enrich HSPCs by implanting biomaterials into the spatium intermusculare of mice hind limbs. Gelatine sponges were implanted into the spatium intermusculare of mice and then retrieved after 12 days. The presence of HSPCs in the migrating cells (MCs) was detected by phenotypically probing with CD34+Sca-1+ and functionally confirming the presence of using colony-forming cell assay and assessing the long-term reconstitution ability. The frequency of CD34+, Sca-1+, and CD34+Sca-1+ cells and colony formation unit in the MCs was much higher than that in the bone marrow (BM). Moreover, transplanted MCs were able to home to BM, muscle, and spleen, which induced an efficient long-term hematopoietic reconstitution in vivo. In addition, HSPCs within the MCs originated from the BM. Furthermore, the administration of G-CSF greatly reduced the time of implantation, and increased the number of MCs and frequency of HSPCs in the MCs. These data provide compelling evidence that HSPCs can be enriched by implanting biomaterial into spatium intermusculare. Implantation of biomaterial may be seen as the first step to a proof of their applicability to clinical practice in enriching HSPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.