BackgroundProinflammatory cytokine interleukin-1beta (IL-1β) is expressed at high levels in the developing brain and declines to low constitutive levels in the adult. However, the pathophysiological function of IL-1β during brain development remains elusive. In this study, we investigated the role of IL-1β in neuronal migration.MethodsThe Boyden transwell assay was used to examine the effects of IL-1β on the migration of dissociated primary cortical neurons. To determine the role of IL-1β in neuron leading process pathfinding, we employed a growth cone turning assay. In utero electroporation combined with RNAi technology was used to examine the neuronal migration in vivo during brain development in Sprague–Dawley rats.ResultsIL-1β at concentrations ranging from 0.1 to 10 ng/mL in the lower chamber of a transwell induced a significant increase in the number of migrating neurons in a dose-dependent manner. When IL-1β was simultaneously put in both the upper and lower chambers to eliminate the gradient, no significant differences in cell migration were observed. IL-1 receptor antagonist IL-1RA dose-dependently blocked the attractive effect of IL-1β on neuronal migration. Microscopic gradients of IL-1β were created near the growth cones of isolated neurons by repetitive pulsatile application of picoliters of a IL-1β-containing solution with a micropipette. We found that growth cones exhibited a clear bias toward the source of IL-1β at the end of a one hour period in the IL-1β gradient. No significant difference was observed in the rate of neurite extension between IL-1β and controls. We electroporated specific siRNA constructs against IL-1R1 mRNA into cortical progenitors at embryonic day 16 and examined the position and distribution of transfected cells in the somatosensory cortex at postnatal day 5. We found that neurons transfected with IL-1R1-siRNA displayed a severe retardation in radial migration, with about 83% of total cells unable to arrive at the upper cortical layers.ConclusionsOur study suggests an essential contribution of IL-1β to neuronal migration during brain development, which provides a basis to understand the physiological roles of IL-1β in the developing brain and could have significant implications for the prevention of some neurodevelopment disorders due to abnormal neuronal migration.
This work aimed to retrospectively analyze Willis covered stent (WCS)'s therapeutic efficacy in intracranial pseudoaneurysms (PSAs) of the internal carotid artery (ICA). Methods: Between June 2018 and July 2021, 56 individuals with intracranial PSAs of the ICA treated with WCS in three centers were included to analyze information regarding medical records, operative parameters, imaging findings and follow-up data. Results: All WCSs were successfully targeted to the ICA lesions. Total exclusion of PSA was found in 53 cases (94.6%) right upon surgery, and mild endoleak into the aneurysm remained in 3 cases (5.4%). Intraoperative thrombosis occurred in 1 case (1.8%), and tirofiban was utilized for recanalization. Follow-up by angiography showed total aneurysm occlusion in the total number of individuals, including in the 3 above cases with residual endoleak. In-stent stenosis occurred in 7 (12.5%) patients. No stent-related ischemic event was encountered. Predictive factors of late in-stent stenosis following WCS implantation in this patient group were irregular post-operative antiplatelet treatment (p = 0.015) and C4-C5 segment of the ICA (p = 0.043). Conclusion: WCSs are effective in treating intracranial PSAs of the ICA.
Accumulating data suggest that sodium-hydrogen exchangers (NHEs) play a key role in modulating seizure activity by regulating neuronal pH in the brain. Amiloride, an inhibitor of NHEs, has been demonstrated to be effective in many seizure models, although its efficacy for prolonged febrile seizures (FS) remains unclear. In this study, we investigated whether amiloride could produce neuroprotective effects in a prolonged FS model in which FS were induced in rat pups at postnatal day 10 using a heated air approach. Amiloride was administered by intraperitoneal injection at three different doses (0.65, 1.3 and 2.6 mg/kg). Pretreatment with amiloride significantly delayed the onset of the first episode of limbic seizures, whereas posttreatment with amiloride decreased escape latency in the Morris water maze test compared to post-FS treatment with saline. Amiloride also inhibited seizure-induced aberrant neurogenesis. In conclusion, this study demonstrated the antiseizure activity of amiloride. In particular, posttreatment with amiloride resulted in cognitive improvement; this finding provides crucial evidence of the neuroprotective function of amiloride and of the therapeutic potential of amiloride in FS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.