ABSTRACT:The relationship between forests and streamflows has long been an important research interest in China. The purpose of this paper is to summarize progress and lessons learned from the forest-streamflow studies over the past four decades in China. To better measure the research gaps between China and other parts of the world, a brief global review on the findings from paired watershed studies over the past 100 years was also provided. In China, forest management shifted in the later 1990s from timber harvesting to forest restoration. Forest-streamflow research was accordingly changed from assessing harvesting impacts to evaluating both harvesting and forestation effects. Over the past four decades, Chinese forest hydrology research has grown substantially. Significant progress has been made on measuring individual processes, but little solid, long-term data were available to assess the relationship between forest changes and streamflows because of an absence of standard paired watersheds. In addition, misuse of statistical analyses was often found in the literature. A unique opportunity exists in China to study the forestation effects on streamflow as several large-scale forestation programs are being implemented. Such an opportunity should include a robust paired watershed design under an integrated watershed ecosystem framework to avoid repeating the lessons already learned. Recommendations on future forest-streamflow research directions in China are provided.
Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6-km 2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967-1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use ⁄ land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff ⁄ precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon's potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover-streamflow relationships during a 50-year time frame. This paper highlighted the importance of eco-physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.