Abstract:The spreading and permeation of droplets on porous substrates is a fundamental process in a variety of applications, such as coating, dyeing, and printing. The spreading and permeating usually occur synchronously but play different roles in the practical applications. The mechanisms of the competition between spreading and permeation is significant but still unclear. A lattice Boltzmann method is used to study the spreading and permeation of droplets on hybrid-wettability porous substrates, with different wettability on the surface and the inside pores. The competition between the spreading and the permeation processes is studied in this work from the effects of the substrate and the fluid properties, including the substrate wettability, the porous parameters, as well as the fluid surface tension and viscosity. The results show that increasing the surface wettability and the porosity contact angle both inhibit the spreading and the permeation processes. When the inside porosity contact angle is larger than 90 ∘ (hydrophobic), the permeation process does not occur. The droplets suspend on substrates with Cassie state. The droplets are more easily to permeate into substrates with a small inside porosity contact angle (hydrophilic), as well as large pore sizes. Otherwise, the droplets are more easily to spread on substrate surfaces with small surface contact angle (hydrophilic) and smaller pore sizes. The competition between droplet spreading and permeation is also related to the fluid properties. The permeation process is enhanced by increasing of surface
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.