Autophagy is a process conserved from yeast to humans. Since the discovery of autophagy, its physiological role in cell survival and cell death has been intensively investigated. The inherent ability of the autophagy machinery to sequester, deliver, and degrade cytoplasmic components enables autophagy to participate in cell survival and cell death in multiple ways. The primary role of autophagy is to send cytoplasmic components to the vacuole or lysosomes for degradation. By fine-tuning autophagy, the cell regulates the removal and recycling of cytoplasmic components in response to various stress or signals. Recent research has shown the implications of the autophagy machinery in other pathways independent of lysosomal degradation, expanding the pro-survival role of autophagy. Autophagy also facilitates certain forms of regulated cell death. In addition, there is complex crosstalk between autophagy and regulated cell death pathways, with a number of genes shared between them, further suggesting a deeper connection between autophagy and cell death. Finally, the mitochondrion presents an example where the cell utilizes autophagy to strike a balance between cell survival and cell death. In this review, we consider the current knowledge on the physiological role of autophagy as well as its regulation and discuss the multiple functions of autophagy in cell survival and cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.