Identifying genomic regions that have been targets of natural selection remains one of the most important and challenging areas of research in genetics. To this end, we report an analysis of 26,530 single nucleotide polymorphisms (SNPs) with allele frequencies that were determined in three populations. Specifically, we calculated a measure of genetic differentiation, FST, for each locus and examined its distribution at the level of the genome, the chromosome, and individual genes. Through a variety of analyses, we have found statistically significant evidence supporting the hypothesis that selection has influenced extant patterns of human genetic variation. Importantly, by contrasting the FST of individual SNPs to the empirical genome-wide distribution of FST, our results are not confounded by tenuous assumptions of population demographic history. Furthermore, we have identified 174 candidate genes with distribution of genetic variation that indicates that they have been targets of selection. Our work provides a first generation natural selection map of the human genome and provides compelling evidence that selection has shaped extant patterns of human genomic variation
The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n=321,223) and offspring birth weight (n=230,069 mothers), we identified 190 independent association signals (129 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic effects, and then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of those alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Variation within genes has important implications for all biological traits. We identified 3899 single nucleotide polymorphisms (SNPs) that were present within 313 genes from 82 unrelated individuals of diverse ancestry, and we organized the SNPs into 4304 different haplotypes. Each gene had several variable SNPs and haplotypes that were present in all populations, as well as a number that were population-specific. Pairs of SNPs exhibited variability in the degree of linkage disequilibrium that was a function of their location within a gene, distance from each other, population distribution, and population frequency. Haplotypes generally had more information content (heterozygosity) than did individual SNPs. Our analysis of the pattern of variation strongly supports the recent expansion of the human population.
Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.