Protein aggregation is mostly viewed as deleterious and irreversible causing several pathologies. However, reversible protein aggregation has recently emerged as a novel concept for cellular regulation. Here, we characterize stress-induced, reversible aggregation of yeast pyruvate kinase, Cdc19. Aggregation of Cdc19 is regulated by oligomerization and binding to allosteric regulators. We identify a region of low compositional complexity (LCR) within Cdc19 as necessary and sufficient for reversible aggregation. During exponential growth, shielding the LCR within tetrameric Cdc19 or phosphorylation of the LCR prevents unscheduled aggregation, while its dephosphorylation is necessary for reversible aggregation during stress. Cdc19 aggregation triggers its localization to stress granules and modulates their formation and dissolution. Reversible aggregation protects Cdc19 from stress-induced degradation, thereby allowing cell cycle restart after stress. Several other enzymes necessary for G1 progression also contain LCRs and aggregate reversibly during stress, implying that reversible aggregation represents a conserved mechanism regulating cell growth and survival.
Highlights d A high-throughput (60,000 cells/s) method for fluorescence imaging flow cytometry d Collection of multi-color fluorescence blur-free images with high sensitivity d Sub-cellular analysis of structures down to 500 nm with microscopy image quality d High-throughput localization analysis of phase-separated compartments in cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.