Abstracti mb_944 47..62Aphids exhibit unique attributes, such as polyphenisms and specialized cells to house endosymbionts, that make them an interesting system for studies at the interface of ecology, evolution and development. Here we present a comprehensive characterization of the developmental genes in the pea aphid, Acyrthosiphon pisum, and compare our results to other sequenced insects. We investigated genes involved in fundamental developmental processes such as establishment of the body plan and organogenesis, focusing on transcription factors and components of signalling pathways. We found that most developmental genes were well conserved in the pea aphid, although many lineage-specific gene duplications and gene losses have occurred in several gene families. In particular, genetic components of transforming growth factor beta (TGFb) Wnt, JAK/STAT (Janus kinase/signal transducer and activator of transcription) and EGF (Epidermal Growth Factor) pathways appear to have been significantly modified in the pea aphid.
The germarium, oocytes and embryos of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum are contained within a single ovariole. This species provides an excellent model for studying how maternally-inherited germ plasm is specified and how it is transferred to primordial germ cells. Previous studies have shown that germ cells are first segregated at the embryonic posterior after formation of the blastoderm. We used two cross-reacting antibodies against the conserved germline markers Vasa and Nanos, which specifically identified these presumptive germ cells, to investigate whether germ cells were determined during early development. We observed randomly-distributed weak expression of Vasa signals in the developing oocyte but no localization in the oocyte segregated from the germarium. Localized Vasa was not apparent until it was detected at the posterior in the embryo undergoing the second nuclear division. Nanos, on the other hand, was localized to a nuage-like structure surrounding the nucleus in the developing and segregated oocytes. At the beginning of the oocyte maturation division, Nanos localization shifted to the posterior and could be identified in successive stages until it was incorporated into the germ cells. Taken together, our results suggest that germ plasm is specified in the developing oocyte and that Nanos is an earlier germline marker than Vasa. Presumptive germ cells stained for Vasa remained at a dorsal location in the egg during middevelopment and then were guided into abdominal segments A1 to A6 during germ-band retraction. We infer that germ cells coalesce with segmented gonadal mesoderm during this period.
In the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, germline specification depends on the germ plasm localized to the posterior region of the egg chamber before the formation of the blastoderm. During blastulation, germline segregation occurs at the egg posterior, and in early gastrulation germ cells are pushed inward by the invaginating germ band. Previous studies suggest that germ cells remain dorsal in the embryo in subsequent developmental stages. In fact, though, it is not known whether germ cells remain in place or migrate dynamically during katatrepsis and germ-band retraction. We cloned Apvasa, a pea aphid homologue of Drosophila vasa, and used it as a germline marker to monitor the migration of germ cells. Apvasa messenger RNA (mRNA) was first restricted to morphologically identifiable germ cells after blastoderm formation but that expression soon faded. Apvasa transcripts were again identified in germ cells from the stage when the endosymbiotic bacteria invaded the embryo, and after that, Apvasa mRNA was present in germ cells throughout all developmental stages. At the beginning of katatrepsis, germ cells were detected at the anteriormost region of the egg chamber as they were migrating into the body cavity. During the early period of germ-band retraction, germ cells were separated into several groups surrounded by a layer of somatic cells devoid of Apvasa staining, suggesting that the coalescence between migrating germ cells and the somatic gonadal mesoderm occurs between late katatrepsis and early germ-band retraction.
Highlights d Two epigenetic modes control two b-keratin gene clusters during skin specification d One enhancer co-activates all subclustered Keratin genes on the Chr25 cluster d 3D chromatin looping mediates differential Keratin expression of the Chr27 cluster d 3-factor model explains how to establish region-specific chromatin configuration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.