The fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10-association with RNAs in brain and cells suggesting a cooperative interaction. We identified the RNAs recognized by MOV10 using RNA-IP and iCLIP. Examination of the fate of MOV10 on RNAs revealed a dual function for MOV10 in regulating translation: it facilitates microRNA-mediated translation of some RNAs but also increases expression of other RNAs by preventing AGO2 function. The latter subset was also bound by FMRP in close proximity to the MOV10 binding site, suggesting that FMRP prevents MOV10-mediated microRNA suppression. We have identified a new mechanism for FMRP-mediated translational regulation through its association with MOV10.
BackgroundMoloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality.ResultsMov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry.ConclusionsMov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer’s disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-017-0387-1) contains supplementary material, which is available to authorized users.
Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability and autism. It results from expansion of a CGG nucleotide repeat in the 5′ untranslated region (UTR) of FMR1. Large expansions elicit repeat and promoter hyper-methylation, heterochromatin formation, FMR1 transcriptional silencing and loss of the Fragile X protein, FMRP. Efforts aimed at correcting the sequelae resultant from FMRP loss have thus far proven insufficient, perhaps because of FMRP’s pleiotropic functions. As the repeats do not disrupt the FMRP coding sequence, reactivation of endogenous FMR1 gene expression could correct the proximal event in FXS pathogenesis. Here we utilize the Clustered Regularly Interspaced Palindromic Repeats/deficient CRISPR associated protein 9 (CRISPR/dCas9) system to selectively re-activate transcription from the silenced FMR1 locus. Fusion of the transcriptional activator VP192 to dCas9 robustly enhances FMR1 transcription and increases FMRP levels when targeted directly to the CGG repeat in human cells. Using a previously uncharacterized FXS human embryonic stem cell (hESC) line which acquires transcriptional silencing with serial passaging, we achieved locus-specific transcriptional re-activation of FMR1 messenger RNA (mRNA) expression despite promoter and repeat methylation. However, these changes at the transcript level were not coupled with a significant elevation in FMRP protein expression in FXS cells. These studies demonstrate that directing a transcriptional activator to CGG repeats is sufficient to selectively reactivate FMR1 mRNA expression in Fragile X patient stem cells.
CGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames. However, the relative abundance of these proteins in FXTAS brains and their co-localization with each other and NIIs is lacking. Here we describe rater-blinded assessment of immunohistochemical and immunofluorescence staining with newly generated antibodies to different CGG RAN translation products in FXTAS and control brains as well as co-staining with ubiquitin, p62/SQSTM1, and ubiquilin 2. We find that both FMRpolyG and a second CGG repeat derived RAN translation product, FMRpolyA, accumulate in aggregates in FXTAS brains. FMRpolyG is a near-obligate component of both ubiquitin-positive and p62-positive NIIs in FXTAS, with occurrence of aggregates in 20% of all hippocampal neurons and > 90% of all inclusions. A subset of these inclusions also stain positive for the ALS/FTD associated protein ubiquilin 2. Ubiquitinated inclusions and FMRpolyG+ aggregates are rarer in cortex and cerebellum. Intriguingly, FMRpolyG staining is also visible in control neuronal nuclei. In contrast to FMRpolyG, staining for FMRpolyA and CCG antisense derived RAN translation products were less abundant and less frequent components of ubiquitinated inclusions. In conclusion, RAN translated FMRpolyG is a common component of ubiquitin and p62 positive inclusions in FXTAS patient brains.Electronic supplementary materialThe online version of this article (10.1186/s40478-019-0782-7) contains supplementary material, which is available to authorized users.
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.