BackgroundIL-6 classic signaling is linked to anti-inflammatory functions while the trans-signaling is associated with pro-inflammatory responses. Classic signaling is induced via membrane-bound IL-6 receptor (IL-6R) whereas trans-signaling requires prior binding of IL-6 to the soluble IL-6R. In both cases, association with the signal transducing gp130 receptor is compulsory. However, differences in the downstream signaling mechanisms of IL-6 classic- versus trans-signaling remains largely elusive.MethodsIn this study, we used flow cytometry, quantitative PCR, ELISA and immuno-blotting techniques to investigate IL-6 classic and trans-signaling mechanisms in Human Umbilical Vein Endothelial Cells (HUVECs).ResultsWe show that both IL-6R and gp130 are expressed on the surface of human vascular endothelial cells, and that the expression is affected by pro-inflammatory stimuli. In contrast to IL-6 classic signaling, IL-6 trans-signaling induces the release of the pro-inflammatory chemokine Monocyte Chemoattractant Protein-1 (MCP-1) from human vascular endothelial cells. In addition, we reveal that the classic signaling induces activation of the JAK/STAT3 pathway while trans-signaling also activates the PI3K/AKT and the MEK/ERK pathways. Furthermore, we demonstrate that MCP-1 induction by IL-6 trans-signaling requires simultaneous activation of the JAK/STAT3 and PI3K/AKT pathways.ConclusionsCollectively, our study reports molecular differences in IL-6 classic- and trans-signaling in human vascular endothelial cells; and elucidates the pathways which mediate MCP-1 induction by IL-6 trans-signaling.Electronic supplementary materialThe online version of this article (10.1186/s12964-018-0268-4) contains supplementary material, which is available to authorized users.
The complexity of a common inflammatory disease is influenced by multiple genetic and environmental factors contributing to the susceptibility of disease. Studies have reported that these exogenous and endogenous components may perturb the balance of innate immune response by activating the NLRP3 inflammasome. The multimeric NLRP3 complex results in the caspase-1 activation and the release of potent inflammatory cytokines, like IL-1β. Several studies have been performed on the association of the genetic alterations in genes encoding NLRP3 and CARD8 with the complex diseases with inflammatory background, like inflammatory bowel disease, cardiovascular diseases, rheumatoid arthritis, and type 1 diabetes. The aim of the present review is therefore to summarize the literature regarding genetic alterations in these genes and their association with health and disease.
Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.