Accumulated evidence reminds one that abrupt transitions between dry and wet spells, though attracting less attention, have harmful influences upon global continents as extensively investigated droughts and floods. This study attempts to incorporate dryness–wetness transitions into the current hazard assessment framework through bivariate frequency analysis and causal attribution from a teleconnection perspective. In the study, regional dry and wet conditions are monitored using the multivariate standardized drought index (MSDI) which facilitates the integrated evaluation of water deficits/surplus from a combined viewpoint of precipitation (largely denoting the received atmospheric water) and runoff (representing an important source of surface water). On such a basis, a copula-based method is subsequently utilized to calculate joint return periods of dryness–wetness combinations in three (i.e., moderate, severe and extreme) severity scenarios. The changing frequency of diverse dryness–wetness combinations is also estimated under a changing climate using a 25-year time window. Furthermore, the cross-wavelet transform is applied to attribute variations in dry and wet conditions to large-scale climate indices, which benefits the early warning of dryness–wetness combinations by providing predictive information. A case study conducted during 1952–2010 in the Huai River basin (HRB)—a typical climatic transition zone in China—shows that the HRB is subject to prolonged dryness with the highest frequency, followed by the abrupt transition from dryness to wetness. Spatially, abrupt dryness–wetness transitions are more likely to occur in the southern and central parts of the HRB than in the rest of the proportion. The past half-century has witnessed the dominantly higher frequency of occurrence of dryness–wetness combinations under three severity scenarios. In particular, the occurrence of the continued dry/wetness escalates more rapidly than transition events under climate change. Moreover, a preliminary attribution analysis discloses the link of the dry and wet conditions in the HRB with climate indices, such as the El Niño southern oscillation, the Pacific decadal oscillation and the Arctic oscillation, as well as sunspot activities. The results of the study enrich the current atlas of water-related hazards, which may benefit more effective hazard mitigation and adaptation.
The dynamics of plants’ carbon and water use efficiency and their responses to drought are crucial to the sustainable development of arid and semi-arid environments. This study used trend analysis and partial correlation analysis to examine the carbon use efficiency (CUE) and water use efficiency (WUE) of Inner Mongolia’s vegetation from 2001 to 2020. MODIS data for gross primary productivity (GPP), net primary productivity (NPP), potential evapotranspiration (PET), evapotranspiration (ET), drought severity index (DSI), and plant type were used. Altered trends were observed for drought during 2001–2020 in the study area. The results revealed that 98.17% of the research area’s drought trend was from dry to wet and 1.83% was from wet to dry, and the regions with decreased drought regions were broadly dispersed. In 2001–2020, CUE in Inner Mongolia declined by 0.1%·year−1, whereas WUE reduced by 0.008 g C·mm−1·m−2·year−1, but the total change was not significant. CUE decreased from west to east, whereas WUE increased from southwest to northeast. DSI and CUE had the highest negative connection, accounting for 97.96% of the watershed area, and 71.6% passed the significance test. The correlation coefficients of DSI and WUE were spatially opposite to those of CUE and DSI. In total, 54.21% of the vegetation cover exhibited a negative connection with DSI. The CUE and WUE of different vegetation types in Inner Mongolia were negatively correlated with the DSI index except for grasslands (GRA). Drought in Inner Mongolia mostly influenced the CUE of different plant types, which had a higher negative correlation than WUE. The study’s findings can inform climate change research on Inner Mongolia’s carbon and water cycles.
Background: Religious sites are carriers of religious culture communication, reflecting the types, development history and influence space of religions. However, the construction of religious sites in different historical times and different regions is affected by many factors. This study explores the spatial distribution characteristics and influencing factors of religious sites in Inner Mongolia under the influence of many factors, so as to provide reference for understanding the spread and influence of religion in different time and space. Methods: In order to show how religious sites are affected by these factors, this paper uses GIS to extract the relevant factor data of religious sites and analyze the relationship between the number of other religious sites. Results: Although religious sites were constructed at different historical times, it can be inferred according to the existing data that the religious sites are affected by the terrain, elevation, landscape, river, and lake conditions. At the same time, the religious sites are also restricted by the population and economic scale. The number and growth of religious sites show a certain regularity in different historical times. Conclusion: The distribution of religious sites in Inner Mongolia presents the characteristics of dual core distribution, and different religious types also have significant differences in the choice of cities and rural areas, mountains and plains, rivers, and lakes; religious sites are closely related to the local population, economy, and historical time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.