The magnitude of heat and salt transfer between the Indian and Atlantic oceans through 'Agulhas leakage' is considered important for balancing the global thermohaline circulation. Increases or reductions of this leakage lead to strengthening or weakening of the Atlantic meridional overturning and associated variation of North Atlantic Deep Water formation. Here we show that modern Agulhas waters, which migrate into the south Atlantic Ocean in the form of an Agulhas ring, contain a characteristic assemblage of planktic foraminifera. We use this assemblage as a modern analogue to investigate the Agulhas leakage history over the past 550,000 years from a sediment record in the Cape basin. Our reconstruction indicates that Indian-Atlantic water exchange was highly variable: enhanced during present and past interglacials and largely reduced during glacial intervals. Coherent variability of Agulhas leakage with northern summer insolation suggests a teleconnection to the monsoon system. The onset of increased Agulhas leakage during late glacial conditions took place when glacial ice volume was maximal, suggesting a crucial role for Agulhas leakage in glacial terminations, timing of interhemispheric climate change and the resulting resumption of the Atlantic meridional overturning circulation.
[1] We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7‰ increase in d 18 O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d 18 O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d 18 O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d 18 O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted Dd 18 O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary Dd 18 O may be used to infer the seasonal contrast in temperature at the base of the SML.
Whereas several well‐established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field‐based calibration is similar for both species from a salinity of ~36.8 up to ~39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca‐salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species‐specific calibrations are still required and more research on the effect of temperature is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.