The identification of peptides presented by human leukocyte antigen (HLA) class I is tremendously important for the understanding of antigen presentation mechanisms under healthy or diseased conditions. Currently, mass spectrometry-based methods represent the best methodology for the identification of HLA class I-associated peptides. However, the HLA class I peptide repertoire remains largely unexplored because the variable nature of endogenous peptides represents difficulties in conventional peptide fragmentation technology. Here, we substantially enhanced (about threefold) the identification success rate of peptides presented by HLA class I using combined electron-transfer/higher-energy collision dissociation (EThcD), reporting over 12,000 high-confident (false discovery rate <1%) peptides from a single human B-cell line. The direct importance of such an unprecedented large dataset is highlighted by the discovery of unique features in antigen presentation. The observation that a substantial part of proteins is sampled across different HLA alleles, and the common occurrence of HLA class I nested sets, suggest that the constraints of HLA class I to comprehensively present the health states of cells are not as tight as previously thought. Our dataset contains a substantial set of peptides bearing a variety of posttranslational modifications presented with marked allele-specific differences. We propose that EThcD should become the method of choice in analyzing HLA class I-presented peptides.human leukocyte antigen class I | electron-transfer dissociation | major histocompatibility complex | phosphorylation | binding motif C lass I molecules of the human leukocyte antigen (HLA) complex present short peptides, typically 8-11 aa in length at the cell surface, for scrutiny by the immune system (1). These peptide fragments are generated in the cytoplasm by proteasomal degradation of source proteins, translocated into the endoplasmic reticulum (ER) and subjected to N-terminal trimming to a size that is suitable for loading onto the HLA (2). Loading is governed by physicochemical binding motifs typical for each HLA class I allele (3). Depending on the motif required for the HLA class I allele(s) expressed, an ER-residing peptide may become presented or not. Recognition of specific HLA class I peptide complexes by CD8 T lymphocytes on pathogen infected or cancerous cells leads to the activation of a cytotoxic response and the clearance of the diseased cell. The identification of these HLA class I-associated peptides has important consequences for understanding the biology of cells, vaccine design, and tumor immunotherapy (4, 5).Today mass spectrometry (MS) is the core technology for the analysis of HLA class I-presented peptides. These peptides are typically enriched from cell lysates through the affinity purification of HLA class I peptide complexes, released from the HLA by acid elution, and separated by liquid chromatography (LC) before introduction into the mass spectrometer. Identification is commonly accomplished by...
Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease.
We report unexpected mass spectrometric observations of glycosylated human leukocyte antigen (HLA) class I-bound peptides. Complemented by molecular modeling, in vitro enzymatic assays, and oxonium ion patterns, we propose that the observed O-linked glycans carrying up to five monosaccharides are extended O-GlcNAc’s rather than GalNAc-initiated O-glycans. A cytosolic O-GlcNAc modification is normally terminal and does not extend to produce a polysaccharide, but O-GlcNAc on an HLA peptide presents a special case because the loaded HLA class I complex traffics through the endoplasmic reticulum and Golgi apparatus on its way to the cell membrane, and is hence exposed to glycosyltransferases. In addition we report for the first time natural HLA class I presentation of O- and N-linked glycopeptides derived from membrane proteins. HLA class I peptides with centrally located oligosaccharides have been shown to be immunogenic and may therefore be important targets for immune-surveillance.
A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO 2 ) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with formaldehyde at the protein level, after which the proteins are digested and the newly formed internal peptides modified with the PTAG reagent glyceraldhyde-3-phosphate in nearly perfect yields (> 99%). The resulting phosphopeptides are depleted through binding onto TiO 2 , keeping exclusively a set of N-acetylated and/or N-dimethylated terminal peptides for analysis by liquid chromatography-tandem MS. Analysis of peptides derivatized with differentially labeled isotopic analogs of the PTAG reagent revealed a high depletion efficiency (> 95%). The method enabled identification of 753 unique N-terminal peptides (428 proteins) in N. meningitidis and 928 unique N-terminal peptides (572 proteins) in S. cerevisiae. These included verified neo-N termini from subcellular-relocalized membrane and mitochondrial proteins. The presented PTAG approach is therefore a novel, versatile, and robust method for mass spectrometry-based
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.