Capitalizing on the massive increase in sample concentrations which are produced by extremely low elution volumes, nanoliquid chromatography–electrospray ionization-tandem mass spectrometry (nano-LC–ESI-MS/MS) is currently one of the most sensitive analytical technologies for the comprehensive characterization of complex protein samples. However, despite tremendous technological improvements made in the production and the packing of monodisperse spherical particles for nanoflow high-pressure liquid chromatography (HPLC), current state-of-the-art systems still suffer from limits in operation at the maximum potential of the technology. With the recent introduction of the μPAC system, which provides perfectly ordered micropillar array based chromatographic support materials, completely new chromatographic concepts for optimization toward the needs of ultrasensitive proteomics become available. Here we report on a series of benchmarking experiments comparing the performance of a commercially available 50 cm micropillar array column to a widely used nanoflow HPLC column for the proteomics analysis of 10 ng of tryptic HeLa cell digest. Comparative analysis of LC–MS/MS-data corroborated that micropillar array cartridges provide outstanding chromatographic performance, excellent retention time stability, and increased sensitivity in the analysis of low-input proteomics samples and thus repeatedly yielded almost twice as many unique peptide and unique protein group identifications when compared to conventional nanoflow HPLC columns.
Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.
Maternal lipolytic metabolic disorders result in a lipotoxic microenvironment in the ovarian follicular fluid (FF) which deteriorates oocyte quality. Although cellular stress response mechanisms are well defined in somatic cells, they remain largely unexplored in oocytes, which have distinct organelle structure and nuclear transcription patterns. Here we used shotgun proteomic analyses to study cellular responses of bovine oocytes and cumulus cells (CCs) after in vitro maturation under lipotoxic conditions; in the presence of pathophysiological palmitic acid (PA) concentration as a model. Differentially regulated proteins (DRPs) were mainly localized in the endoplasmic reticulum, mitochondria and nuclei of CCs and oocytes, however the DRPs and their direction of change were cell-type specific. Proteomic changes in PA-exposed CCs were predominantly pro-apoptotic unfolded protein responses (UPRs), mitochondrial and metabolic dysfunctions, and apoptotic pathways. This was also functionally confirmed. Interestingly, although the oocytes were enclosed by CCs during PA exposure, elevated cellular stress levels were also evident. However, pro-survival UPRs, redox regulatory and compensatory metabolic mechanisms were prominent despite evidence of mitochondrial dysfunction, oxidative stress, and reduced subsequent embryo development. The data provides a unique insight that enriches the understanding of the cellular stress responses in metabolically-compromised oocytes and forms a fundamental base to identify new targets for fertility treatments as discussed within.
HIV-exposed seronegative individuals (HESNs) are persons who remain seronegative despite repeated exposure to HIV, suggesting an in vivo resistance mechanism to HIV. Elucidation of endogenous factors responsible for this phenomenon may aid in the development of new classes of microbicides and therapeutics. We compared cervicovaginal protein abundance profiles between high-risk HESN and two control groups: low-risk HESN and HIV-positives. Four iTRAQ-based quantitative experiments were performed using samples classified based on presence/absence of particular gynaecological conditions. After statistical analysis, two proteins were shown to be differentially abundant between high-risk HESNs and control groups. Serpin A5, a serine proteinase inhibitor and Myeloblastin, a serine protease, were up- and downregulated, respectively. Commercially available ELISA assays were used to confirm differential Serpin A5 levels. These results suggest that HIV resistance in CVF of HESNs is the result of a delicate balance between two complementary mechanisms: downregulation of serine proteinases and upregulation of their inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.