At the time of implantation, the trophoblast cells of the embryo adhere and then invade into the maternal endometrium and eventually establish placentation. The endometrium at the same time undergoes decidualization, which is essential for successful pregnancy. While the NK cells of the decidua have been implicated to play a key role in trophoblast invasion, few evidence are now available to demonstrate a pro-invasive property of decidual stromal cells. Secretions from decidualized endometrial stromal cells promote invasion of primary trophoblasts and model cell lines by activating proteases and altering expression of adhesion-related molecules. The decidual secretions contain high amounts of pro-invasive factors that include IL-1b, IL-5, IL-6, IL-7, IL-8, IL-9, IL-13, IL-15, Eotaxin CCL11, IP-10 and RANTES, and anti-invasive factors IL-10, IL-12 and VEGF. It appears that these decidual factors promote invasion by regulating the protease pathways and integrin expression utilizing the STAT pathways in the trophoblast cells. At the same time the decidua also seem to secrete some anti-invasive factors that are antagonist to the matrix metalloproteinases and/or are activators of tissue inhibitors of metalloproteinases. This might be essential to neutralize the effects of the invasionpromoting factors and restrain overinvasion. It is tempting to propose that during the course of pregnancy, the decidua must balance the production of these pro and anti-invasive molecules and such harmonizing production would allow a timely and regulated invasion.
LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function.
During forebrain development, a telencephalic organizer called the cortical hem is crucial for inducing hippocampal fate in adjacent cortical neuroepithelium. How the hem is restricted to its medial position is therefore a fundamental patterning issue. Here, we demonstrate that Foxg1-Lhx2 interactions are crucial for the formation of the hem. Loss of either gene causes a region of the cortical neuroepithelium to transform into hem. We show that FOXG1 regulates Lhx2 expression in the cortical primordium. In the absence of Foxg1, the presence of Lhx2 is sufficient to suppress hem fate, and hippocampal markers appear selectively in Lhx2-expressing regions. FOXG1 also restricts the temporal window in which loss of Lhx2 results in a transformation of cortical primordium into hem. Therefore, Foxg1 and Lhx2 form a genetic hierarchy in the spatiotemporal regulation of cortical hem specification and positioning, and together ensure the normal development of this hippocampal organizer.
Homeobox A10 (HOXA10), a member of abdominal B subclass of homeobox genes, is responsible for uterine homeosis during development. Intriguingly, in the adult murine uterus, HOXA10 has been demonstrated to play important roles in receptivity, embryo implantation, and decidualization. However, the roles of HOXA10 in the primate endometrium are not known. To gain insights into the roles of HOXA10 in the primate endometrium, its expression was studied in the endometria of bonnet monkey (Macaca radiata) in the receptive phase and also in the endometria of monkeys treated with antiprogestin onapristone (ZK98.299) or in conception cycle where the presence of preimplantation stage blastocyst was verified. In addition, the mRNA expression of HOXA11 and insulin-like growth factor-binding protein 1 (IGFBP1) was evaluated by real-time PCR in these animals.The results revealed that HOXA10 in the luteal phase primate endometrium is differentially expressed in the functionalis and the basalis zones, which is modulated in vivo by progesterone and also by the signals from the incoming embryo suggesting the involvement of HOXA10 in the process of establishment of pregnancy in primates. In addition, the results also demonstrated that the expression of IGFBP1 but not HOXA11 is coregulated with HOXA10 in the endometria of these animals. The pattern of changes in the expression of HOXA10 in response to the two stimuli suggests that endometrial receptivity and implantation not only requires a synchrony of maternal and embryonic signaling on endometrial cells in the primates but there also exists a controlled differential response among the cells of various uterine compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.