The aim of the present study was to investigate the chemoprotective activity of anthocyanin-rich extracts (AREs) from bilberry (Vaccinium myrtillus L.), chokeberry (Aronia meloncarpa E.), and grape (Vitis vinifera) by assessing multiple biomarkers of colon cancer in male rats treated with a colon carcinogen, azoxymethane. Fischer 344 male rats were fed the AIN-93 diet (control) or AIN-93 diet supplemented with AREs for 14 wk. Biomarkers that were evaluated included the number and multiplicity of colonic aberrant crypt foci (ACF), colonic cell proliferation, urinary levels of oxidative DNA damage, and expression of cyclooxygenase (COX) genes. To assess the bioavailability, levels of anthocyanins in serum, urine, and feces were evaluated. Total ACF were reduced (P<0.05) in bilberry, chokeberry, and grape diet groups compared with the control group. The number of large ACF was also reduced (P<0.05) in bilberry and chokeberry ARE-fed rats. Colonic cellular proliferation was decreased in rats fed bilberry ARE and chokeberry ARE diets. Rats fed bilberry and grape ARE diets had lower COX-2 mRNA expression of gene. High levels of fecal anthocyanins and increased fecal mass and fecal moisture occurred in ARE-fed rats. There was also a significant reduction (P<0.05) in fecal bile acids in ARE-fed rats. The levels of urinary 8-hydroxyguanosine were similar among rats fed different diets. These results support our previous in vitro studies suggesting a protective role of AREs in colon carcinogenesis and indicate multiple mechanisms of action.
11Beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1) plays a key role in the regulation of intracellular glucocorticoid concentrations. Increased message and/or activity of adipose 11beta-HSD-1 are characteristics of human and animal models of obesity. Hexose-6-phosphate dehydrogenase (H6PDH) is colocalized with 11beta-HSD-1 and may be a critical factor in determining the oxo-reductase activity of 11beta-HSD-1. This study examined the effects of sucrose solution access on body weight, body composition, and message of 11beta-HSD-1 and H6PDH in mesenteric adipose and liver. Rats were assigned to 3 groups: 1) control (ad libitum intake of nonpurified diet and water only); 2) ad libitum intake of 16% sucrose solution (S16); or 3) ad libitum intake of 32% sucrose solution (S32) in addition to ad libitum intake of diet and water. The S32 group consumed more energy daily than the S16 and control groups, yet body weight did not differ among groups. Percentages of body fat did not differ between the S16 and S32 groups but were higher than in controls. Hepatic 11beta-HSD-1 message was suppressed by 46% in the S16 group and by 47% in the S32 group, whereas the H6PDH message nearly doubled in the S16 group compared to the control group. In mesenteric fat, 11beta-HSD-1 message increased 23-fold in the S16 group and 32-fold in the S32 group and the H6PDH message increased 3.5-fold in the S16 group compared to the control group. These data demonstrate that sucrose can promote increased 11beta-HSD-1 and H6PDH message in mesenteric fat while concomitantly decreasing 11beta-HSD-1 message and increasing H6PDH message in liver. These observations support the hypothesis that sucrose access causes obesity via its ability to increase adipose 11beta-HSD-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.