The insulin-like growth factor I receptor (IGF-IR), which mediates the mitogenic action of IGF-I, has been shown to play an essential role in normal growth and development. However, the precise role of IGF-IR in the growth and differentiation of the mammary gland has not been elucidated. This study examines the profile of the IGF-IR gene and protein expression during normal postnatal mammary gland development in order to gain further insight into the role of the IGF-I/IGF-IR during mammary gland morphogenesis. Gene and protein expression were examined in developing mouse mammary glands (virgin, pregnant, lactating, involuting) by real time PCR analysis and Western blotting. Both IGF-IR gene and protein expression levels were high during early pregnancy. Interestingly, the level of gene expression was significantly down-regulated during late pregnancy (5.4 fold) and lactation (9-13 fold) and significantly up-regulated (3.9 fold) during late involution, to the level observed in the virgin mammary gland. By in situ hybridization, the IGF-IR transcripts were localized to the proliferating ductal epithelium of the mammary glands of virgin mice and to the differentiating ductal and alveolar epithelium of the mammary glands during pregnancy and lactation. In the involuting gland, the transcripts were localized to the regressing ductal epithelium. These data are direct evidence that IGF-IR expression is important for alveolar cell proliferation and suggest that the progression of involution may require the down-regulation of IGF-IR gene expression. Altogether, these results demonstrate that a developmental IGF-IR gene expression pattern exists in the mouse mammary gland and that increases in gene expression at specific phases of development may reflect an important role for IGF-I/IGF-IR at those phases of development.
Attempts to promote neuronal survival and repair with ciliary neurotrophic factor (CNTF) have met with limited success. The variability of results obtained with CNTF may, in part, reflect the fact that some of the biological actions of the cytokine are mediated by a complex formed between CNTF and its specific receptor, CNTFR␣, which exists in both membrane-bound and soluble forms. In this study, we compared the actions of CNTF alone and CNTF complexed with soluble CNTFR␣ (hereafter termed "Complex") on neuronal survival and growth. Although CNTF alone produced limited effects, Complex protected against glutamate-mediated excitotoxicity via gap junction-dependent and -independent mechanisms. Further examination revealed that only Complex promoted neurite outgrowth. Differential gene expression analysis revealed that, compared with CNTF alone, Complex differentially regulates several neuroprotective and neurotrophic genes. Collectively, these findings indicate that CNTF exerts more robust effects on neuronal survival and growth when applied in combination with its soluble receptor.
The insulin-like growth factor I receptor (IGF-IR) is expressed in many cell types and is critical for normal growth and development. In the healthy mammary gland, the role of IGF-IR is not fully elucidated. However, IGF-IR, which is primarily expressed in the mammary epithelial cells, is known to play an obligatory role in cellular transformation, facilitating the progression to breast cancer. We have utilized the tetracycline regulatory (tet-on) system to generate an in vitro model system to allow us to further investigate IGF-I/IGF-IR function in mammary epithelial cells. A plasmid construct containing a mutant IGF-I receptor (IGF-IR-DN) fused to the tetracycline operator (tetOPh(CMV)-IGF-IR-DN) was stably transfected into MCF-7 human breast cancer cells. The conditional regulation of the IGF-IR-DN gene expression was studied in four independent clonal lines. The translated IGF-IR-DN protein was detected only in the stably transfected doxycycline- induced cells, and its expression was up-regulated (three- to sixfold) following induction. IGF-I stimulated cell proliferation diminished (twofold) in doxycycline- induced cells compared to uninduced cells, demonstrating that the transgene construct was functional and ruling out any pleiotropic effect that may be attributed to doxycycline. Interestingly, autophosphorylation of the IGF-IR and phosphorylation of the downstream substrate, insulin receptor substrate-1 (IRS-1), was not inhibited in doxycycline/IGF-I treated cells, suggesting the possibility that activation of downstream substrates other than the IRS-1 may be critical for optimal cell proliferation. This novel in vitro model should allow us to more directly examine the role of IGF-I/IGF-IR signaling and function in mammary epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.