Salinity stress causes ion toxicity and osmotic imbalances, leading to oxidative stress in plants. Arbuscular mycorrhizae (AM) are considered bio‐ameliorators of saline soils and could develop salinity tolerance in crop plants. Pigeonpea exhibits strong mycorrhizal development and has a high mycorrhizal dependency. The role of AM in enhancing salt tolerance of pigeonpea in terms of shoot and root dry weights, phosphorus and nitrogen contents, K+ : Na+, Ca2+ : Na+ ratios, lipid peroxidation, compatible solutes (proline and glycine betaine) and antioxidant enzyme activities was examined. Plants were grown and maintained at three levels of salt (4, 6 and 8 dSm−1). Stress impeded the growth of plants, led to weight gain reductions in shoots as well as roots and hindered phosphorus and nitrogen uptake. However, salt‐stressed mycorrhizal plants produced greater root and shoot biomass, had higher phosphorus and nitrogen content than the corresponding uninoculated stressed plants. Salt stress resulted in higher lipid peroxidation and membrane stability was reduced in non‐AM plants. The presence of fungal endophyte significantly reduced lipid peroxidation and membrane damage caused by salt stress. AM plants maintained higher K+ : Na+ and Ca2+ : Na+ ratios than non‐AM plants under stressed and unstressed conditions. Salinity induced the accumulation of both proline and glycine betaine in AM and non‐AM plants. The quantum of increase in synthesis and accumulation of osmolytes was higher in mycorrhizal plants. Antioxidant enzyme activities increased significantly with salinity in both mycorrhizal and non‐mycorrhizal plants. In conclusion, pigeonpea plants responded to an increased ion influx in their cells by increasing the osmolyte synthesis and accumulation under salt stress, which further increased with AM inoculation and helped in maintaining the osmotic balance. Increase in the antioxidant enzyme activities in AM plants under salt stress could be involved in the beneficial effects of mycorrhizal colonization.
Bacterial quorum sensing (QS) systems are cell density-dependent regulatory networks that coordinate bacterial behavioural changes from single cellular organisms at low cell densities to multicellular types when their population density reaches a threshold level. At this stage, bacteria produce and perceive small diffusible signal molecules, termed autoinducers in order to mediate gene expression. This often results in phenotypic shifts, like planktonic to biofilm or non-virulent to virulent. In this way, they regulate varied physiological processes by adjusting gene expression in concert with their population size. In this review we give a synopsis of QS mediated cell-cell communication in bacteria. The first part focuses on QS circuits of some Gram-negative and Gram-positive bacteria. Thereafter, attention is drawn on the recent applications of QS in development of synthetic biology modules, for studying the principles of pattern formation, engineering bi-directional communication system and building artificial communication networks. Further, the role of QS in solving the problem of biofouling is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.