A multi‐frequency rectangular slot antenna for 4G‐LTE/WiMAX/WLAN and S/C/X‐bands applications is presented. The proposed antenna is comprised of rectangular slot, a pair of E‐shaped stubs, and an inverted T‐shaped stub and excited using staircase feed line. These employed structures help to achieve multiband resonance at four different frequency bands. The proposed multiband slot antenna is simulated, fabricated and tested experimentally. The experimental results show that the antenna resonates at 2.24, 4.2, 5.25, and 9.3 GHz with impedance bandwidth of 640 MHz (2.17‐2.82 GHz) covering WiMAX (802.16e), Space to Earth communications, 4G‐LTE, IEEE 802.11b/g WLAN systems defined for S‐band applications. Also the proposed antenna exhibits bandwidth of 280 MHz (4.1‐4.38 GHz) for Aeronautical and Radio navigation applications, 80 MHz (4.2‐4.28 GHz) for uncoordinated indoor systems,1060 MHz (5.04‐6.1 GHz) for the IEEE 802.11a WLAN system defined for C‐band applications and 2380 MHz (7.9‐10.28 GHz) defined for X‐band applications. Further, the radiation patterns for the designed antenna are measured in anechoic chamber and are found to agree well with simulated results.
The spectral congestion in existing Industrial, Scientific, and Medical (ISM) Wireless Local Area Network (WLAN) bands has led to the emergence of new ISM bands (Unlicensed National Information Infrastructure (UNII)) from 5.150 to 5.710 GHz. In this paper, a simple uniplanar, high gain, microstrip antenna is designed, fabricated, and tested for existing WLAN and new UNII standards. The proposed antenna provides dualband operation by joining two rectangular rings and cutting Defected Ground Structure in the Coplanar Wave Guide (CPW) feed. The experimental and simulation results show good return loss characteristics and stable radiation pattern over the desired frequency bands ranging from 2.20 to 2.65 GHz (WLAN band) at a lower frequency and from 5.0 to 5.45 GHz (UNII-1/UNII-2 bands). The measured peak gains are 5.5 and 4.9 dBi at 2.45 GHz (WLAN band) and 5.15 GHz (UNII band), respectively.
In this paper, a novel design of compact Coplanar Waveguide-fed planar monopole antenna with enhanced bandwidth and multiband characteristics has been proposed. Two rectangular rings have been incorporated in a rectangular patch to obtain multiband operation for Wireless Local Area Network (WLAN) (2.4/5.2/5.8 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) (2.3/2.5/5.5 GHz) bands. A parasitic strip and meandering along with double-ringed structure have been used to achieve enhanced impedance bandwidth in WLAN (from 2.26 to 3.03 GHz) and WiMAX (from 4.48 to 6.85 GHz) bands. The parametric analysis is carried out to study effect of varying dimensions on antenna performance. The proposed antenna is optimized and prototype is designed and fabricated. Simulated and measured radiation patterns in elevation and azimuthal planes are also observed. The antenna shows significant gain of 7.33 dBi at 6.54 GHz frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.