Early and accurate classification of arrhythmia helps the experts to select the treatment for the patient to increase the recovery rate. The deep learning method of convolution neural network (CNN) is used for classification, and this has an overfitting problem. In this research, the multi-task group bi-directional long short term memory (MTGBi-LSTM) method is proposed to increases the performance of arrhythmia classification. The multi-task learning technique learns two ECG signals in shared representation for effective learning. The global and intra LSTM method selects the relevant feature and easily escapes from local optima. The MTGBi-LSTM model learns the unique features in shared representation that helps to overcome overfitting problem and increases the learning rate of the model. The MTGBi-LSTM model in arrhythmia classification is evaluated on MIT-BIH dataset. The MTGBi-LSTM model has 96.48% accuracy, 97.73% sensitivity, existing AFibNet has 96.36% accuracy, and 93.65% sensitivity for arrhythmia classification in CPSC 2018 dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.