Histone deacetylase (HDAC) proteins are promising targets for cancer treatment, with several HDAC inhibitors used clinically as anticancer drugs. Most HDAC inhibitors nonspecifically interact with all or many of the 11 HDAC isoforms. Isoform-selective HDAC inhibitors would be useful tools to dissect the individual functions of HDAC proteins in cancer formation, in addition to potentially displaying effective anticancer properties. We report here a robust HDAC activity assay for screening selective HDAC inhibitors, which is inspired by the traditional enzyme-linked immunosorbent assay (ELISA). The key feature of the ELISA-based HDAC activity assay is use of mammalian cell-derived HDAC isoforms instead of recombinant proteins. Importantly, the assay was validated with several known HDAC inhibitors. The ELISAbased HDAC activity assay will facilitate the characterization of isoform-selective HDAC inhibitors against mammalian cell-derived HDAC proteins, which will enhance HDAC-centered cancer research and provide a foundation for anticancer drug development.
Histone deacetylase (HDAC) proteins are epigenetic regulators that deacetylate protein substrates, leading to subsequent changes in cell function. HDAC proteins are implicated in cancers, and several HDAC inhibitors have been approved by the FDA as anticancer drugs, including SAHA (suberoylanilide hydroxamic acid; Vorinostat and Zolinza). Unfortunately, SAHA inhibits most HDAC isoforms, which limits its use as a pharmacological tool and may lead to side effects in the clinic. In this work SAHA analogues substituted at the C2 position were synthesized and screened for HDAC isoform selectivity and in cells. The most potent and selective compound, C2--hexyl SAHA, displayed submicromolar potency with 49- to 300-fold selectivity for HDAC6 and HDAC8 compared to HDAC1, -2, and -3. Docking studies provided a structural rationale for selectivity. Modification of the nonselective inhibitor SAHA generated HDAC6/HDAC8 dual selective inhibitors, which can be useful lead compounds toward developing pharmacological tools and more effective anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.